

HowMessy 2.9

User Manual

by Robelle Solutions Technology Inc.

Program and manual copyright © 1982-2009 Robelle Solutions Technology Inc.

Permission is granted to reprint this document (but not for profit), provided that copyright notice is
given.

Qedit and Suprtool are trademarks of Robelle Solutions Technology Inc. Other product and company
names mentioned herein may be the trademarks of their respective owners.

Robelle Solutions Technology Inc.

Suite 372, 7360 137 Street
Surrey, BC Canada V3W 1A3

Phone: 604.501.2001

Fax: 604.501.2003

E-mail: sales@robelle.com

E-mail: support@robelle.com

Web: www.robelle.com

HowMessy 4.8 User Manual Contents • i

Contents

Chapter 1 - Welcome to HowMessy 1

Introduction ... 1
Authorization to Use HowMessy ... 1
Compatibility-Mode and Native-Mode .. 1
MPE/iX .. 2
Documentation ... 2

User Manual .. 2
Highlights in 2.9 .. 2

Dynamic Dataset Expansion (MDX and DDX) .. 2
Jumbo Datasets .. 2

Chapter 2 - Accessing HowMessy 3

Introduction ... 3
Converting DBLOADNG Job Streams .. 3
Partial Database Reports .. 4
PCL Reports .. 4
System JCW .. 5
SPDEPREFETCH JCW ... 5

Chapter 3 - Applying HowMessy 7

Introduction ... 7
A Sample HowMessy Report .. 7

Explanation of HowMessy Columns ... 7
Analyzing HowMessy Reports .. 12

MCUST Automatic Master ... 12
MSTATE Manual Master .. 13
DNAME Detail Dataset ... 13
DRECV Detail Dataset .. 14
PRTBAL Detail Dataset .. 14
POSTHIST Detail Dataset ... 15

Resolving Problems ... 16
Master Dataset Solutions ... 16
Detail Dataset Solutions .. 16
Using DBUNLOAD and DBLOAD .. 16
Using Adager ... 17
Using Suprtool ... 17
Using DBMGR .. 17
Using DBGENERAL .. 17
Writing Custom Programs ... 17

Chapter 4 - Self-Describing Loadfile 19

Introduction ... 19
Form of the Loadfile .. 19

ii • Contents HowMessy 4.8 User Manual

Suprtool Processing ... 20
COBOL Layout ... 20
Pascal Layout ... 21
C Layout .. 21

Chapter 5 - Installing HowMessy 23

Introduction ... 23
Step 1: Restore from the Tape ... 23
Step 2: Upgrade the Robelle Account .. 23
Step 3: Install the Program ... 23
Documentation ... 24

Appendix A - Error Messages 25

Introduction ... 25

Glossary of Terms 27

Index 29

HowMessy 4.8 User Manual Chapter 1 - Welcome to HowMessy • 1

Chapter 1 - Welcome to
HowMessy

Introduction
Welcome to version 2.9 of HowMessy -- the fast report on the internal efficiency of
your database.

HowMessy answers the question, "How messy are things inside my database?"
HowMessy shows percentage secondaries, worst cluster, longest chains, average
chains, blocks per chain, percentage inefficient pointers, and deviation from
maximum efficiency. With this information, you can decide what database changes
might improve performance: increase or decrease capacity, add or delete paths,
remove sort fields, alter primary paths, or repack a dataset along the primary path.

HowMessy works with all versions of IMAGE, including TurboIMAGE and
IMAGE/SQL. HowMessy checks the database type and automatically adjusts to the
type of database (e.g., TurboIMAGE, IMAGE/SQL, Jumbo datasets).

Authorization to Use HowMessy
HowMessy is a Bonus program that accompanies most Robelle products. We will
send you a copy if your Robelle order entitles you to receive it. As a Robelle
customer you may install HowMessy on your CPUs which are licensed for our
products. There is no charge for using HowMessy, but you are not free to distribute
it. Please install Howmessy only on your licensed CPUs.

HowMessy is in the PUB group to remind you that it is a Bonus product, and not part
of any library that you can freely distribute. There is another category of programs
from Robelle, called the "Qlib". These are programs which you may use on any CPU
and may distribute freely to your friends. HowMessy is not

Compatibility-Mode and Native-Mode

 part of the Qlib.

If you have questions on whether you are authorized to install HowMessy on a
particular CPU, please call us for advice.

HowMessy is available in compatibility-mode for MPE IV and MPE V and in
native-mode for MPE/iX. The native-mode version of HowMessy is much faster

2 • Chapter 1 - Welcome to HowMessy HowMessy 4.8 User Manual

than the compatibility-mode version on MPE/iX. Both versions of HowMessy have
exactly the same features and produce the same report.

MPE/iX
Users often wonder if the performance problems highlighted by HowMessy apply to
IMAGE/SQL databases on MPE/iX. While MPE/iX is very different from MPE V,
the ideas behind the HowMessy report still apply to MPE/iX IMAGE/SQL
databases. HowMessy shows how much extra disc I/O may occur in a messy
database. This potential disc I/O affects performance on both MPE V and MPE/iX.

Documentation
HowMessy User Manual and Change Notice are available on line at:

http://www.robelle.com/library/manuals/

User Manual
The user manual contains the full description of all the HowMessy commands, as
well as usage tips. The manual is up-to-date with all the latest changes incorporated
in HowMessy. To see only the changes in the latest version, see the "What's New"
section of the manual, or see the change notice.

Highlights in 2.9
• HowMessy now supports databases with that utilize the new limits of

1200 items, 240 datasets and 64 pasts from a master.

• HowMessy will report an error if an attempt to analyze a database that
has been converted or built with the new entrynumber format.

• HowMessy would fail with a Speed Demon prefetch error on small
datasets that had a block size that was not on a 128 word boundary.

• HowMessy would fail on certain older versions of Image and the CM
version would fail on Classic machines.

Dynamic Dataset Expansion (MDX and DDX)
You can enable dynamic expansion of datasets for an Image/SQL database using a
Third Party Tool like Adager on an existing database or by using DBSCHEMA
settings for a new database. If you have enabled either MDX or DDX, HowMessy
reports ADX, MDX, or DDX under the Type column.

For DDX datasets, the capacity reported is the maximum capacity of the dataset, not
the current capacity. For MDX datasets, the current capacity is reported.

Jumbo Datasets
HowMessy automatically detects Jumbo datasets and adjusts its internal routines to
read multiple files. The HowMessy report does not change for Jumbo datasets.

http://www.robelle.com/library/manuals/�

HowMessy 4.8 User Manual Chapter 2 - Accessing HowMessy • 3

Chapter 2 - Accessing HowMessy

Introduction
The input to HowMessy is any database, the output can be either a standard 132-
column report, or 175-column and 223-column reports using PCL output to either
your attached printer via record mode or to an output file named Loadrept. The
program file that you :Run is always HowMessy.Pub.Robelle.

Log on as the database creator in the same account as the database:

:hello dba.prod {must be CREATOR}

Create a :File command for the output file Loadrept. If you leave it out, HowMessy
prints the report on $Stdlist.

:file loadrept;cctl;dev=lp,,copies

:build report;rec=-132,,f,ascii;cctl
:file loadrept=report,old;dev=disc

Run the HowMessy program:

:run howmessy.pub.robelle

Enter the database name.

Enter Database: SALE.DB

HowMessy attempts to open the database in mode-5 (read-only; allow concurrent
updates by users who open in mode-1). If that fails, HowMessy tries mode-6 (read-
only, shared; allow one update user who opens the database in mode-4). This means
that you do NOT have to wait until you have exclusive access to the database to run
HowMessy. Since HowMessy does not read down the chains of your database, it
does not matter that people may be modifying the database while you are analyzing
it. The only result is that the entry counts might be off by one or two.

After analyzing the database and printing a report, HowMessy continues to prompt
for database names until you enter a blank line.

Converting DBLOADNG Job Streams
1. Add :File for Loadrept file.

2. Delete open-mode lines and dataset names. HowMessy reports on all
datasets in a database, unless run with ;info="p".

4 • Chapter 2 - Accessing HowMessy HowMessy 4.8 User Manual

3. Be sure to leave a blank line after the databases which you want to be
reported.

4. Sample stream:

:JOB HOWMESSY,DBA.PROD,BASES
:COMMENT DISCARD $STDLIST IF NO ERRORS.
:FILE LOADREPT;DEV=LP;CCTL
:RUN HowMessy.Pub.ROBELLE
SALEDB
PURCH
AR

:EOJ

Partial Database Reports
You can report on individual datasets by running HowMessy with Info="P" (you can
use lowercase or uppercase). This forces HowMessy to prompt for one or more
dataset names to report. Note: if you select a detail dataset, HowMessy must serially
read the master datasets for all paths in the detail dataset. In this case, HowMessy
will produce a report for all the datasets that it has read.

:run howmessy.pub.robelle;info="p"
Enter Database: SALE.DB
Enter Dataset: SALES
Enter Dataset: CUSTOMERS
Enter Dataset:

HowMessy continues to prompt for dataset names until you enter a blank line.
HowMessy does not analyze the requested datasets or print a report until you have
entered the blank line.

PCL Reports
You can produce reports that utilize PCL output to output to your attached LaserJet
printer via record mode or to a LaserJet attached to your HP3000.

Currently you can invoke the pcl option of the report by entering some commands in
the info string.

The valid commands are:
Command Purpose
R1 Record mode with pcl 1
R4 Record mode with pcl 4
R6 Record mode with pcl 6
W1 Loadrept with pcl 1
W4 Loadrept with pcl 4
W6 Loadrept with pcl 6
D Enable duplex mode
A Enable A4 paper

The PCL codes will product reports in the following formats:
PCL Code Orientation Dimensions
1 Lineprinter landscape 175 cols/60 lines
4 Lineprinter portrait 132 cols/80 lines

HowMessy 4.8 User Manual Chapter 2 - Accessing HowMessy • 5

6 Lineprinter legal landscape 223 cols/60 lines

The report for the r4 and w4 reports are exactly the same as previous versions of the
report. The pcl1 and pcl 6 versions of the report have had some changes and allow
for larger values.

In order to produce a report to your attached printer you invoke the PCL report
format in the following manner.

The following run command invokes HowMessy with a PCL 1, report written to
your attached LaserJet in Duplex Mode, and A4 Paper.

:run howmessy.pub.robelle;info="r1da"

The following run command invokes HowMessy with a PCL 1, report written to a
the Loadrept file in Duplex Mode, and A4 Paper.

:run howmessy.pub.robelle;info="w1da"

Duplex mode is useful for those LaserJets that allow printing on both sides.

The A4 Option enables reports to be printed on "A4" paper.

System JCW
HowMessy sets the system job control word JCW to a fatal state when HowMessy
fails in a batch job.

SPDEPREFETCH JCW
HowMessy can read data directly from disc into memory using Multi-Rec Nobuf
reads. However, HowMessy is often slowed down on MPE/iX while waiting for the
file system to satisfy its read requests. Using prefetch on MPE/iX, HowMessy is able
to increase its throughput by instructing MPE/iX's memory manager to read the data
from disc to memory ahead of time. This way, when HowMessy needs the data it is
already in memory and HowMessy doesn't have to wait.

The SPDEPREFETCH JCW tells the memory manager how far ahead of HowMessy
it should fetch data. Setting this number too low won't give the memory manager
sufficient time to get the data into memory before HowMessy needs it. Setting the
number too high may mean that on a busy system the data will be overwritten by
something else before HowMessy gets a chance to use it.

When reading an input dataset, HowMessy/iX prefetches twice the buffer length of
data from disc to memory. This default value of 2 works well, even on small
machines. If HowMessy is running stand-alone on a fast CPU with a lot of memory,
you may wish to increase the prefetch amount. The maximum value for
SPDEPREFETCH is 5 (i.e., five times the buffer length). If you don't want
HowMessy to prefetch, you can specify SPDEPREFETCH 0. This may be required
when HowMessy is operating with third-party software tools that intercept all file
system calls (e.g., Netbase from Quest Software).

The SPDEPREFETCH JCW is ignored by HowMessy/V.

HowMessy 4.8 User Manual Chapter 3 - Applying HowMessy • 7

Chapter 3 - Applying HowMessy

Introduction
To demonstrate the power of HowMessy, we will analyze an actual report on the
internal efficiency of a database.

A Sample HowMessy Report
 HowMessy/XL (Version 2.8) Data Base: CUSTMR Run on: SUN, FEB 13, 1994, 4:52 PM
 for IMAGE/3000 databases By Robelle Solutions Technology Inc. Page: 1
 Secon- Max
 Type Load daries Blks Blk Max Ave Std Expd Avg Ineff Elong-
 Data Set Capacity Entries Factor (Highwater) Fact Search Field Chain Chain Dev Blocks Blocks Ptrs ation
 MCUST Ato 21881 17295 79.0% 31.1% 6 28 CUSTOMER 6 1.45 0.71 1.08 1.08 6.1% 1.08
 MSTATE Man 18401 14722 80.0% 31.4% 15 11 ACCOUNT 7 1.46 0.72 1.00 1.31 23.5% 1.31
 DNAME Det 21876 17295 79.1% (18336) 4 !CUSTOMER 1 1.00 0.00 1.00 1.00 0.0% 1.00
 S ACCOUNT 245 1.17 3.14 1.03 1.17 53.3% 1.14
 DRECV Det 208196 118609 57.0% (155612) 23S!ACCOUNT 1604 8.06 35.75 1.36 11.32 72.5% 8.34

The output of HowMessy is a file named Loadrept, and by default (as above) is
formatted with 132 columns for fifteen-inch wide paper. With the PCL 1 and 6
options, 175 columns and 223 columns are available on the report. These versions of
the report currently allow for larger values to be printed and indicates the Search
Field data type. So if you have a particularly large database or are getting all 9's for a
particular column we recommend that you use the PCL 1 or 6 options.

Explanation of HowMessy Columns
The sample above shows the default columns on the report, and each of them is
described below:

V or XL
Indicator of which version produced the report.

If the indicator next to the word "HowMessy" is "/V", the compatibility-mode
version produced the report. If the indicator is "/XL", the native-mode version
produced the report.

Data Base
Name of the database as read in by HowMessy.

8 • Chapter 3 - Applying HowMessy HowMessy 4.8 User Manual

Run On
Date and time the report was run.

Data Set
Name of the dataset.

Data Set
MCUST

Datasets appear in the order that they are numbered by IMAGE (i.e., data set #1 is
first, followed by data set #2). This is the same as their order in the schema. Master
datasets always appear before the detail datasets to which they link.

Type
Type of the dataset.

Type
 Ato

In the Type column, "Ato" means Automatic Master Dataset, "Man" means manual
master dataset and "Det" means detail dataset. If a dataset has dynamic expansion
enabled, the symbol shown is ADX for automatic master datasets, MDX for manual
master datasets, or DDX for detail datasets.

Capacity
Number of records the dataset can hold.

Capacity
 21881

For master datasets, whether automatic or manual, the Capacity should not be a
power of two (e.g., not 2, 4 ... 1024, 2048 ... 65536 ...). For detail datasets, the
capacity should be large enough to avoid overflowing before you have time to
expand the dataset; IMAGE rounds the capacity of detail datasets up to the next even
block.

If dynamic dataset expansion has been enabled, the capacity reported by HowMessy
is the maximum capacity (for details) or the current capacity (for masters).

Entries
Number of entries currently in the dataset.

Entries
 17295

In detail datasets, the number of Entries is only significant if the dataset is about to
overflow. In master datasets, the closer the number of entries is to the capacity, the
slower additions to and retrievals from the dataset will be.

Load Factor
Percentage of the capacity currently in use.

 Load
Factor
 79.0%

Load Factor is calculated as "entries/capacity times 100". The performance of master
datasets tends to degrade as the load factor approaches 100%. The performance of
detail datasets is not related to load factor.

Secondaries
For master datasets only, percentage of "secondary" entries.

Secon-
daries
 31.1%

HowMessy calculates this column as "secondaries/entries times 100". IMAGE links
primary entries (those that reside in their intended "hash location") to secondary
entries (those that cannot reside in their hash location because the primary entry
already resides there) via a forward- and backward-linked list for each primary entry.
When searching for (or maintaining) entries, IMAGE hashes to the primary location
and uses the pointers (if necessary) to find the desired record.

HowMessy 4.8 User Manual Chapter 3 - Applying HowMessy • 9

In general, the lower the percentage of secondaries in a master dataset, the better.
However, in special cases there can be a high percentage of secondaries without a
performance penalty (see Ineff Ptrs); there can also be serious problems without a
single secondary.

Max Blks
For master datasets only, worst case of contiguous full blocks.

 Max
Blks
 6

The Max Blks column reveals locally bad hashing ("clustering"), which might be
hidden in the averages. The higher this number, the longer a DBPUT into the
"cluster" will take (because the primary is occupied, IMAGE must search serially
forward through the cluster until it finds a free entry). The value shown in this
column is the worst-case number of contiguous full blocks without a single free entry
(the dataset is treated as a continuous loop, in that the last block loops around to the
first block). The number in this column should be small (1-10, depending upon the
blockfactor) if the key values are hashing in a randomly dispersed manner.

When IMAGE does a DBPUT, it hashes to the primary location. If the primary
location is already occupied by another key value that hashed to the same location (a
synonym), IMAGE searches sequentially forward in the dataset until it finds a free
entry. This free entry is allocated to the new record and is linked to the
forward/backward synonym list. The more blocks IMAGE must search for a free
entry, the longer the DBPUT will take. For a "binary" search field (i.e., J1, J2, K1,
K2, etc.) that is assigned consecutive key values (i.e., order numbers, etc.), a
particularly horrendous situation can arise.

Assume that there are 40,000 entries in a master dataset with a capacity of 50,021
(not a power of 2). The currently assigned key values are 1 to 20,000 and 30,000 to
50,000. Each key value will hash perfectly (there are no synonyms), since IMAGE
hashes by dividing the key value by the capacity and adding 1. Assume that key
values are assigned sequentially, and that the next one is 50,001. What happens when
the key value goes over 50,021 (i.e., the capacity)?

The first key value large enough to "wrap around" and come up with a hash location
that is already occupied is going to cause IMAGE a big headache. IMAGE will
search the vicinity of the primary location for a free entry and, finding none, will
read serially through the dataset until it does. This could take up to Max Blks disc
reads, effectively locking the computer.

Highwater
For detail datasets only, the highwater mark.

(Highwater)
(18336)

For detail datasets, the record number of the Highwater mark is shown in
parentheses. This number is useful, since serial reads must read to the highwater
mark and not to the number of entries in the detail dataset.

Blk Fact
Number of records per physical block.

 Blk
Fact
 28

A low blockfactor sometimes explains bad results in the Ineff Ptrs and Max Blks
columns. The blockfactor is determined by the value for $CONTROL BLOCKMAX
in the schema file (default is 512 words, usually a reasonable choice), but IMAGE
will sometimes select a blockfactor that is lower than necessary in order to save a
few sectors of disc space.

You can specify an explicit blockfactor for an IMAGE dataset by placing it in
parentheses after the capacity in the schema (but before the semicolon).

10 • Chapter 3 - Applying HowMessy HowMessy 4.8 User Manual

"S"
For detail datasets only, sorted path.

 Search Field
S ACCOUNT
S!ACCOUNT

An "S" appears if this is a sorted path into a detail dataset. When an entry is added to
a sorted chain, IMAGE must search up the chain to find the correct position to insert
the new entry. The longer the chain is, the slower this will be (see Ave Chain
column), unless the entries are always added in sorted order.

"!"
For detail datasets only, primary path.

 Search Field
 !CUSTOMER
S!ACCOUNT

"!" appears if this is the primary path for a detail dataset. The primary path is the one
used by DBUNLOAD to copy the entries from the dataset to the tape (unless the
SERIAL option is used). After a DBLOAD, entries with the same value for the
primary-path item will tend to be in the same physical block (i.e., they will be
contiguous in the dataset). Their Elongation will be 1.00 (see last column of the
HowMessy report).

What this means is that you can retrieve the entries on the primary path faster
because they tend to be in the same disc block. For the primary path, you should
select the path with the longest average chain length (greater than 1.00!), but also
with a high frequency of access by on-line users. There is no point in optimizing a
path that is seldom used. Of course, there is probably no point in having a path that is
seldom used.

Search Field
Name of the search field and type.

 Search Field
 CUSTOMER

For master datasets, this is the single Search Field for the dataset. Detail datasets
may have more than one search field, so HowMessy prints a separate line of analysis
for each path into the dataset.

The Type of the Search Field will appear on the reports run with PCL 1 or PCL 6.

IMAGE uses two radically different hashing algorithms for search fields, depending
upon the data type. Search fields of "Ascii" type (U, X, Z or P) are hashed using all
bytes of the key value in the calculation, but search fields of "binary" type (I, J, K or
R) are hashed using only the rightmost 31 bits of the search field. The last step of the
hashing algorithm involves dividing by the capacity and saving the remainder. This
suggests that "binary" keys should never be longer than four bytes and that you may
still get very ugly results for certain patterns of key values. You may want to
consider changing the type of the key value to Numeric Display (Z) in order to use
the other hashing algorithm.

Max Chain
Number of records on the longest chain.

 Max
Chain
 6

For a master dataset, the length shown is for the maximum synonym chain. The
shorter the synonym chains, the better for performance. However, if the Max Chain
value is 1 for a master dataset and the Load Factor is greater than 50%, it means that
there have been no hashing collisions at all. This is suspicious, indicating non-
random hashing and potential problems (see Max Blks).

For detail datasets, this column shows the maximum number of entries with the same
value for this search field. If you know that there should be only one detail entry per
key value for this path, a value greater than 1 suggests inadequate checking in the
application programs. If there are more than 99,999 records for a single key value,

HowMessy 4.8 User Manual Chapter 3 - Applying HowMessy • 11

the maximum chain will be shown as 99999. You can try using the PCL 1 or 6
options, which allow larger values to be printed in all columns.

Ave Chain
Average length of a chain.

 Ave
Chain
 1.45

The Ave Chain column is calculated as the total number of entries in the dataset,
divided by the number of chains. For master datasets, this number is related to the
Secondaries column and should be from 1.01 to 1.50. That is, the average synonym
chain length should be short. For detail datasets, this number is application-
dependent. In fact, you can use this number to optimize application programs (allow
table space for the average number of line items on an order).

If the Ave Chain value is very large for a detail path, the path may not be necessary.
A search path is an added structure for your database, which must be "paid for"
through increased overhead. If the search path does not "divide" the dataset into a
large number of small subsets, such as orders for a customer, the path is not doing
the job of a path. An example of such a path would be the division number of an
employee detail dataset, where there are only three unique division values. It would
be faster to scan the dataset sequentially and select the employees with the desired
division than to do a DBFIND and read down a chain that contains 1/3 of the entries
in the dataset. This is especially the case if you have Suprtool, which can do serial
selections much faster than QUERY or an application program.

Std Dev
Standard deviation of the chain length.

 Std
 Dev
 0.71

The Std Dev column shows the deviation from the average that is required to
encompass 90% of the cases. If Std Dev is small, most of the chains are close to the
Ave Chain length. If Std Dev is large, a significant number of chains are longer or
shorter than the average (90% of the chains are within Std Dev of the average, plus or
minus).

Expd Blocks
Average expected blocks per chain.

 Expd
Blocks
 1.08

This column shows the average number of blocks each chain would occupy if entries
with the same key value were adjacent. This value is computed as the sum of the
expected blocks for each chain divided by the number of existing chains. Expd
Blocks is used with Avg Blocks to calculate Elongation.

Avg Blocks
Average actual blocks per chain.

 Avg
Blocks
 1.08

This column shows the actual average blocks per chain. This is computed as the sum
of the pointers to different blocks, divided by the number of chains. The actual
number of blocks used per chain may be several times the theoretically possible
number of blocks; the number of blocks per chain determines the number of disc
reads required to traverse the chain.

Ineff Ptrs
Percentage of pointers across block boundaries.

12 • Chapter 3 - Applying HowMessy HowMessy 4.8 User Manual

Ineff
 Ptrs
 6.1%

The Ineff Ptrs column is one of the key statistics produced by HowMessy. For master
datasets, "inefficient pointers" is computed as the sum of the secondary pointers to
different blocks, divided by the total number of secondary pointers. If the average
chain length is small, this value may be skewed by a few records that end up in
different blocks. For detail datasets, "inefficient pointers" is computed as the sum of
the pointers to different blocks, divided by the total number of entries in the dataset.

If the pointer is to a record in the same disc block, no additional disc overhead is
required to obtain the entry. If the pointer is to a record in another block, IMAGE
must access that block as well as the current block. Obviously, it is desirable to
minimize the percentage of inefficient pointers.

Elongation
Actual blocks divided by expected blocks.

Elong-
 ation
 1.08

This statistic, the ratio between actual and expected, tells how reality differs from the
optimal case. An Elongation value of 1.00 is perfect. A value of 8.34 for a detail path
may be terrible, if the chains of that path are accessed frequently. It means that to
read an average chain takes 8 times more disc reads than if the entries were removed,
sorted by the primary key value, then reloaded packed into adjacent entries. Note
however that only the primary path can be optimized (unless you use Adager). You
cannot pack all of the paths into a dataset.

Analyzing HowMessy Reports
To clarify how to use the HowMessy report, we will reproduce some actual results
and analyze them. The first four datasets that we will study are from a customer
database: MCUST, MSTATE, DNAME, DRECV. Then we will look at two
examples from an inventory database: PRTBAL, POSTHIST.

MCUST Automatic Master
 HowMessy/XL (Version 2.8) Data Base: CUSTMR Run on: SUN, FEB 13, 1994, 4:52 PM
 for IMAGE/3000 databases By Robelle Solutions Technology Inc. Page: 1
 Secon- Max
 Type Load daries Blks Blk Max Ave Std Expd Avg Ineff Elong-
 Data Set Capacity Entries Factor (Highwater) Fact Search Field Chain Chain Dev Blocks Blocks Ptrs ation
 MCUST Ato 21881 17295 79.0% 31.1% 6 28 CUSTOMER 6 1.45 0.71 1.08 1.08 6.1% 1.08
 MSTATE Man 18401 14722 80.0% 31.4% 15 11 ACCOUNT 7 1.46 0.72 1.00 1.31 23.5% 1.31
 DNAME Det 21876 17295 79.1% (18336) 4 !CUSTOMER 1 1.00 0.00 1.00 1.00 0.0% 1.00
 S ACCOUNT 245 1.17 3.14 1.03 1.17 53.3% 1.14
 DRECV Det 208196 118609 57.0% (155612) 23S!ACCOUNT 1604 8.06 35.75 1.36 11.32 72.5% 8.34

As you can see, MCUST is an Automatic Master Dataset that is about 80% full. It
comes from a customer maintenance database and provides inquiry via customer
number into two detail datasets (required customer name and optional shipping
address). Although this dataset is 80% full and has 31% secondaries (69% of the
entries reside at their primary location), only 6% of the synonym pointers are
"inefficient" (i.e., pointing out of the current block).

Thus, this dataset is actually quite efficient (only 31% of the entries are secondaries,
and only 6% of the pointers to these secondaries cross a block boundary). The
explanation for this efficiency is simple: the blockfactor is 28. Therefore, it takes a
cluster of at least 28 records in one block before another entry hashing to that block
will be given an inefficient synonym pointer.

We can also see that the longest synonym chain is only 6 entries, and the largest
cluster of blocks without a free entry is only 6 blocks. This is about as good as an
80%-full master dataset can be expected to look.

HowMessy 4.8 User Manual Chapter 3 - Applying HowMessy • 13

MSTATE Manual Master
 HowMessy/XL (Version 2.8) Data Base: CUSTMR Run on: SUN, FEB 13, 1994, 4:52 PM
 for IMAGE/3000 databases By Robelle Solutions Technology Inc. Page: 1
 Secon- Max
 Type Load daries Blks Blk Max Ave Std Expd Avg Ineff Elong-
 Data Set Capacity Entries Factor (Highwater) Fact Search Field Chain Chain Dev Blocks Blocks Ptrs ation
 MCUST Ato 21881 17295 79.0% 31.1% 6 28 CUSTOMER 6 1.45 0.71 1.08 1.08 6.1% 1.08
 MSTATE Man 18401 14722 80.0% 31.4% 15 11 ACCOUNT 7 1.46 0.72 1.00 1.31 23.5% 1.31
 DNAME Det 21876 17295 79.1% (18336) 4 !CUSTOMER 1 1.00 0.00 1.00 1.00 0.0% 1.00
 S ACCOUNT 245 1.17 3.14 1.03 1.17 53.3% 1.14
 DRECV Det 208196 118609 57.0% (155612) 23S!ACCOUNT 1604 8.06 35.75 1.36 11.32 72.5% 8.34

MSTATE is another master dataset from the same database, but this one is a Manual
Master (it contains data fields, as well as the search field). The search field for this
dataset is drawn from the same "domain" of customer numbers as the search field of
the MCUST dataset, but it contains only "head offices" (they receive statements),
rather than divisions of other head offices. Since the dataset is about the same
percentage full as MCUST and has about the same key values, we would expect it to
produce similar results in all columns.

However, there are two significant differences: 1) the Ineff Ptrs column is 23.5%
(instead of 6.1%) and 2) the Max Blks column is 15 (instead of 6). This dataset is less
efficient than the previous one, even though it has the same percentage of
Secondaries, the same Max Chain length, Ave Chain length, and Std Dev. The reason
is easy to see: MSTATE has a blockfactor of only 11 records per block, as opposed
to the 28 per block in MCUST.

DNAME Detail Dataset
 HowMessy/XL (Version 2.8) Data Base: CUSTMR Run on: SUN, FEB 13, 1994, 4:52 PM
 for IMAGE/3000 databases By Robelle Solutions Technology Inc. Page: 1
 Secon- Max
 Type Load daries Blks Blk Max Ave Std Expd Avg Ineff Elong-
 Data Set Capacity Entries Factor (Highwater) Fact Search Field Chain Chain Dev Blocks Blocks Ptrs ation
 MCUST Ato 21881 17295 79.0% 31.1% 6 28 CUSTOMER 6 1.45 0.71 1.08 1.08 6.1% 1.08
 MSTATE Man 18401 14722 80.0% 31.4% 15 11 ACCOUNT 7 1.46 0.72 1.00 1.31 23.5% 1.31
 DNAME Det 21876 17295 79.1% (18336) 4 !CUSTOMER 1 1.00 0.00 1.00 1.00 0.0% 1.00
 S ACCOUNT 245 1.17 3.14 1.03 1.17 53.3% 1.14
 DRECV Det 208196 118609 57.0% (155612) 23S!ACCOUNT 1604 8.06 35.75 1.36 11.32 72.5% 8.34

DNAME is a Detail Dataset with two search fields. Notice that it has exactly the
same number of entries as MCUST, which is good because each customer number is
supposed to have one (and only one) DNAME entry associated with it (one name
and address per customer number). The Highwater is 18336. Serial reads of this
dataset will have to read 18336 records (you might have expected IMAGE to read
17295 entries). There is room for 1041 new entries (assuming no deletes) before the
highwater mark must be increased.

The first Search Field is CUSTOMER, linked to the MCUST dataset. The Max
Chain length is 1 (only one address per customer number), the Ave Chain length is 1
(at least one address per customer number), the Std Dev is 0 (there are no
exceptions), and there are no Ineff Ptrs (because there are no pointers in a chain of
length 1).

The second Search Field is ACCOUNT, linked to the MSTATE dataset. This field
contains the customer number of the head office. For most DNAME entries, the
ACCOUNT field equals the CUSTOMER field. We can deduce this because the Ave
Chain length is only 1.13. A few customers must be very large, however, since the
Max Chain value is 245 (one customer has 245 divisions reporting to one head
office) and the Std Dev is 3.14. There may not be many pointers on these chains
(since the most common chain length is 1), but the chains which do exist are very
inefficient (53.3% percent of the existing pointers point to different blocks).

14 • Chapter 3 - Applying HowMessy HowMessy 4.8 User Manual

There is one "mistake" in the way this dataset is set up: ACCOUNT should be the
primary path, not CUSTOMER. CUSTOMER became the primary path by default;
the first unsorted path in the dataset is the primary path if you do not specify one
explicitly, and you cannot optimize a path whose chains are always 1 in length.
ACCOUNT, on the other hand, has many chains of length greater than 1 (at least one
chain has 245 members). If it were the primary path, you could reduce the
percentage of Ineff Ptrs by unloading and reloading the dataset.

DRECV Detail Dataset
 HowMessy/XL (Version 2.8) Data Base: CUSTMR Run on: SUN, FEB 13, 1994, 4:52 PM
 for IMAGE/3000 databases By Robelle Solutions Technology Inc. Page: 1
 Secon- Max
 Type Load daries Blks Blk Max Ave Std Expd Avg Ineff Elong-
 Data Set Capacity Entries Factor (Highwater) Fact Search Field Chain Chain Dev Blocks Blocks Ptrs ation
 MCUST Ato 21881 17295 79.0% 31.1% 6 28 CUSTOMER 6 1.45 0.71 1.08 1.08 6.1% 1.08
 MSTATE Man 18401 14722 80.0% 31.4% 15 11 ACCOUNT 7 1.46 0.72 1.00 1.31 23.5% 1.31
 DNAME Det 21876 17295 79.1% (18336) 4 !CUSTOMER 1 1.00 0.00 1.00 1.00 0.0% 1.00
 S ACCOUNT 245 1.17 3.14 1.03 1.17 53.3% 1.14
 DRECV Det 208196 118609 57.0% (155612) 23S!ACCOUNT 1604 8.06 35.75 1.36 11.32 72.5% 8.34

DRECV is a detail dataset which holds Accounts Receivable entries, indexed by
ACCOUNT (customer number of the head office) from the MSTATE master dataset.
The HowMessy report shows that the average customer account has 8.06 A/R
transactions (invoices, payments, etc.), but the largest account has 1604 transactions
and the Std Dev is 35.75 entries (there are a substantial number of accounts with
three or four times the average).

Why would a path with chains of up to 1604 entries be sorted? The fact that the path
is sorted does not cause an efficiency problem in this case because the sort field is
the DATE, and entries are usually added in date order anyway. When a user does an
inquiry into the Accounts Receivable for a customer, the entries are almost always
required in date order, so the sort field makes sense.

This path is the first one with a large Elongation value (8.34). This high value
indicates that the DRECV dataset could be made much more efficient by unloading it
and reloading it (along the primary path). If entries with the same key value were
loaded into adjacent locations in the dataset, the average chain would occupy only
1.36 physical blocks. As the dataset stands, the average chain actually traverses
11.32 blocks (72.5% of the pointers are inefficient). This situation arises naturally
over time because the entries are loaded in date order, not in customer order (new
invoices and payments are loaded every day). This dataset is 8 times more inefficient
than it need be, but the improvement gain from a reload would only be temporary.

PRTBAL Detail Dataset
This example is a detail dataset called PRTBAL with three paths. PRTBAL stands
for "part balance" and each entry records the quantity on hand for a specific part at a
specific location:

 HowMessy/XL (Version 2.8) Data Base: INVENT Run on: SUN, FEB 13, 1994, 4:52 PM
 for IMAGE/3000 databases By Robelle Solutions Technology Inc. Page: 1
 Secon- Max
 Type Load daries Blks Blk Max Ave Std Expd Avg Ineff Elong-
 Data Set Capacity Entries Factor (Highwater) Fact Search Field Chain Chain Dev Blocks Blocks Ptrs ation
 PRTBAL Det 45001 32664 72.6% (35245) 11 !PARTBASEKEY 2 1.00 0.00 1.00 1.00 6.0% 1.00
 BASENUM 19709 379.80 2399.00 742.00 2163.00 27.0% 2.91
 PARTNUM 4 1.31 2.80 1.10 1.34 22.0% 1.22
 POSTHIST Det 80003 56643 70.8% (56745) 7 !INVCENUM 5611 7.04 63.00 1.63 2.91 27.0% 1.79
 PARTNUM 40174 1.34 188.00 1.87 3.10 29.0% 1.66
 PONUM 16445 1.82 93.00 3.22 6.57 31.0% 2.04

PARTBASEKEY is a composite key formed by combining the PARTNUM and the
BASENUM (location). The Ave Chain length is 1, but the Max Chain length is 2.

HowMessy 4.8 User Manual Chapter 3 - Applying HowMessy • 15

Since there can be only one valid on-hand quantity for any part at any one location,
the maximum chain length expected is 1. There must be a duplicate entry in this
dataset. Since the maximum expected chain length is 1, there is no point in selecting
this as the primary path.

PARTNUM is the inventory part number. The Max Chain length is 4 because some
parts are stocked at all three inventory locations (there are three values for
BASENUM) and there is at least one duplicate entry (as deduced in the previous
paragraph).

BASENUM is a code identifying the location where the inventory is stocked. The
Max Chain value of 19709 (out of 32664 total entries) is for the corporate
headquarters, while the remaining inventory is either at the other major office or in
transit. Does it make sense to have BASENUM as a search field in this dataset?
There are 2921 data blocks in PRTBAL (32664 entries divided by a blockfactor of
11 equals 2921 blocks), while Avg Blocks per chain is 2163. We are not saving many
disc accesses by having BASENUM as a key, versus using a serial search to select
the same entries. This is a classic case of an unnecessary key, due to the small
number of possible key values.

POSTHIST Detail Dataset
The second example from the inventory database is a detail dataset called
POSTHIST, again with three paths. POSTHIST maintains relationships between
invoices, purchase orders, and back orders for specific inventory parts:

 HowMessy/XL (Version 2.8) Data Base: INVENT Run on: SUN, FEB 13, 1994, 4:52 PM
 for IMAGE/3000 databases By Robelle Solutions Technology Inc. Page: 1
 Secon- Max
 Type Load daries Blks Blk Max Ave Std Expd Avg Ineff Elong-
 Data Set Capacity Entries Factor (Highwater) Fact Search Field Chain Chain Dev Blocks Blocks Ptrs ation
 PRTBAL Det 45001 32664 72.6% (35245) 11 !PARTBASEKEY 2 1.00 0.00 1.00 1.00 6.0% 1.00
 BASENUM 19709 379.80 2399.00 742.00 2163.00 27.0% 2.91
 PARTNUM 4 1.31 2.80 1.10 1.34 22.0% 1.22
 POSTHIST Det 80003 56643 70.8% (56745) 7 !INVCENUM 5611 7.04 63.00 1.63 2.91 27.0% 1.79
 PARTNUM 40174 1.34 188.00 1.87 3.10 29.0% 1.66
 PONUM 16445 1.82 93.00 3.22 6.57 31.0% 2.04

Based on our experience with the PRTBAL dataset above, we might question the
PARTNUM path here (since 40174 of the 56643 entries have the same value!) and
recommend removing the path. In this case, we would be wrong. The reason is that
PARTNUM is always blank in POSTHIST entries, unless the entry is a back order
allocated to a specific part number (only 16356 out of 56643 entries are so
allocated). The Ave Chain length is close to 1 (one back order per part) and quick
retrieval is important in the 16356 cases that are back orders.

A search field such as PARTNUM in POSTHIST is a common method of isolating a
minority of cases requiring special attention. The majority of entries in POSTHIST
require no special handling, and thus are lumped together on the "default" chain
(PARTNUM equals blanks). One problem with this design is that the default chain
will soon exceed the maximum chain length allowed by IMAGE (65535 entries on a
single chain without TurboIMAGE). When that happens, subsequent DBPUTs to the
default chain will fail. One solution is to use a default value that varies (e.g., two
blanks, followed by today's date). Another solution is to remove the path from this
dataset and create a new detail dataset to provide a cross-reference.

16 • Chapter 3 - Applying HowMessy HowMessy 4.8 User Manual

Resolving Problems
There are different problems for master datasets and detail datasets. The actions you
can take regarding the situations uncovered by HowMessy are determined by what
software tools you have available.

Changing key types or their format is almost impossible after a large database is in
production. Build your test databases early and fill them with an appropriate set of
values (or build your entire application database early if you have the resources). Use
HowMessy on your test database. Early database changes are always the easiest to
implement.

Master Dataset Solutions
If secondaries are over 30% and inefficient pointers are over 50%, the dataset is
either too full or not hashing properly. Increase capacity to a higher odd number, or
change the data type and format of the search field.

Increasing block factor should reduce inefficient pointers.

Look for clustering problems: load factor less than 80%, secondaries less than 5%,
and maximum blocks greater than 100. Clustering usually results from a sequential
binary key; change it to type X, U, or Z.

Detail Dataset Solutions
Ignore load factor, unless dataset overflow is likely.

If the highwater is much larger than the entries, repack the dataset to reduce the
highwater to the number of entries in the dataset. This will speed up serial reads.
Other database changes may also change the highwater mark -- check with the
specific vendors.

If a detail dataset has more than one path, check that the primary path (!) has a large
average chain length and is often accessed. The primary path should not have an
average chain of 1.00 and a maximum chain of 1. If this is the case, assign the
primary path to another path that is frequently accessed.

Elongation tells how inefficiently packed the chains are, relative to their optimum
packing. Elongation of eight on a primary path means that disc I/O will be reduced
by a factor of 8 if you repack the dataset. Adding and deleting detail dataset records
increases the elongation. Be prepared for periodic repacking to maintain maximum
performance.

Look for average chain equal to 1.00, standard deviation about 0.01, and maximum
chain of 2 or 3; this is usually a dataset that should have exactly one entry per key
value but actually has duplicate key values.

Look for paths with long chains (average chain plus standard deviation > 100),
especially if the path is sorted (S).

Using DBUNLOAD and DBLOAD
Change $CONTROL BLOCKMAX to make blocks bigger or smaller. Change
capacity of datasets (increase capacity to reduce synonyms in masters, allow room
for expansion in details). Repack each detail dataset so that entries with the same
primary path value are contiguous, and to reset the highwater mark to the number of
entries in each detail dataset. Select a different primary path for a detail dataset (but

HowMessy 4.8 User Manual Chapter 3 - Applying HowMessy • 17

it takes two "unload/load" cycles to get the entries packed along a new primary path).
Remove a sort field. Remove an unneeded search path. You cannot add or delete
datasets, add or delete fields (except from the end of an entry), or change the data
format of a key. DBUNLOAD and DBLOAD are a standard part of IMAGE.

Using Adager
Change capacity (DETCAP, MASTCAP). Remove unwanted paths (PATHDEL).
Select a different primary path (PRIMARY). Remove a sort field (SORTDEL). Add
or delete fields (FIELDADD, FIELDDEL). Add or delete datasets (SETADD,
SETDEL). Repack a detail dataset (DETPACK). If the primary path is wrong, you
can pack the dataset along the correct path. Adager is a software product of Adager
(telephone: 208-726-9100).

Using Suprtool
Convert a manual master into an automatic master plus a new detail, and copy data
into the new detail (easiest with Adager). Unload and reload a single dataset. Convert
batch applications to use the high-speed serial scan of Suprtool, and remove the
unneeded path from the dataset using DBUNLOAD/DBLOAD or Adager. Suprtool
is a product of Robelle Solutions Technology Inc.

Using DBMGR
Repack the primary path of a detail dataset so that it requires the minimum disc
accesses (this is very fast). Change capacity of master and detail datasets. Erase
datasets quickly. DBMGR is a software product of D.I.S.C. (telephone: 303-444-
4000).

Using DBGENERAL
Change capacity (function 3.3, 3.5). Remove unwanted paths (function 5.5). Select a
different primary path (function 5.5). Remove a sort field (function 5.5). Add or
delete fields (function 5.4). Add or delete datasets (function 5.3). Repack the primary
path of a detail dataset (function 3.6). Erase datasets quickly (function 4.4).
DBGENERAL is a software product of Bradmark Computer Systems (telephone:
713-621-2808).

Writing Custom Programs
Change the format of data fields, including search fields.

HowMessy 4.8 User Manual Chapter 4 - Self-Describing Loadfile • 19

Chapter 4 - Self-Describing
Loadfile

Introduction
When HowMessy is successfully run, it produces a temporary file called Loadfile.
The Loadfile is self-describing so that it can be used immediately by Suprtool or any
other tool that understands Robelle's advanced self-describing file structure (e.g.,
AskPlus). The Loadfile contains all of the information from the HowMessy report,
but a file is better than a report for automated processing. HowMessy purges any
existing temporary Loadfile.

Form of the Loadfile
The following is a Suprtool Form command of the Loadfile:

20 • Chapter 4 - Self-Describing Loadfile HowMessy 4.8 User Manual

 File: LOADFILE.GROUP.ACCT (SD Version B.00.00)
 Entry: Offset
 DATABASE X26 1
 DATASET X16 27
 DATASETNUM I1 43
 DATASETTYPE X4 45
 CAPACITY I2 49
 ENTRIES I2 53
 LOADFACTOR I2 57 << .2 >>
 SECONDARIES I2 61 << .2 >>
 MAXBLOCKS I2 65
 HIGHWATER I2 69
 PATHSORT X1 73
 PATHPRIMARY X1 74
 BLOCKFACTOR I1 75
 SEARCHFIELD X16 77
 MAXCHAIN I2 93
 AVECHAIN I2 97 << .2 >>
 STDDEVIATION I2 101 << .2 >>
 EXPECTEDBLOCKS I2 105 << .2 >>
 AVERAGEBLOCKS I2 109 << .2 >>
 INEFFICIENTPTRS I2 113 << .2 >>
 ELONGATION I2 117 << .2 >>
 CURRENTDATE I2 121 <<YYYYMMDD>>
 CURRENTTIME I1 125
 EXPANSION I1 127
 FUTUREFIELDS X128 129
 Limit: 10000 EOF: 5 Entry Length: 256 Blocking: 35

Suprtool Processing
You can use Suprtool to automatically select Loadfile records based on any fields in
the Loadfile. For example, we will select all detail datasets with a load factor greater
than 85%:

:run suprtool.pub.robelle
>input loadfile
>if datasettype = "D" and loadfactor > 85.0
>sort database
>sort dataset
>dup none,keys
>list
>xeq

COBOL Layout
The Loadfile can be read by user programs. A COBOL program could produce a
custom HowMessy report or it could select specific datasets for further examination
(just like we can with Suprtool). This is the COBOL declaration for the Loadfile:

HowMessy 4.8 User Manual Chapter 4 - Self-Describing Loadfile • 21

01 loadfile-record.
 05 database pic x(26).
 05 dataset pic x(16).
 05 datasetnum pic s9(4) comp.
 05 datasettype pic x(4).
 05 capacity pic s9(9) comp.
 05 entries pic s9(9) comp.
 05 loadfactor pic s9(7)v99 comp.
 05 secondaries pic s9(7)v99 comp.
 05 maxblocks pic s9(9) comp.
 05 highwater pic s9(9) comp.
 05 pathsort pic x.
 05 pathprimary pic x.
 05 blockfactor pic s9(4) comp.
 05 searchfield pic x(16).
 05 maxchain pic s9(9) comp.
 05 avechain pic s9(7)v99 comp.
 05 stddeviation pic s9(7)v99 comp.
 05 expectedblocks pic s9(7)v99 comp.
 05 averageblocks pic s9(7)v99 comp.
 05 inefficientptrs pic s9(7)v99 comp.
 05 elongation pic s9(7)v99 comp.
 05 currdate pic s9(9) comp.
 05 currtime pic s9(4) comp.
 05 expansion pic s9(4) comp.
 05 futurefields pic x(128).

Pascal Layout
The Pascal declaration for the Loadfile is compatible with both Pascal/V and
Pascal/iX (even with the $HP3000_32$ option in effect). This is the Pascal
declaration for the Loadfile:

shortint = -32768 .. +32767; {remove for Pascal/iX}

loadfiletype =
 record
 dbname : packed array[1..26] of char;
 dbset : packed array[1..16] of char;
 dbnum : shortint;
 dbtype : packed array[1..4] of char;
 capacity : integer;
 entries : integer;
 loadfactor : integer;
 secondaries : integer;
 maxblks : integer;
 highwater : integer;
 pathtype : packed array[1..2] of char;
 blkfact : shortint;
 searchfield : packed array [1..16] of char;
 maxchain : integer;
 avechain : integer;
 stddev : integer;
 expblks : integer;
 aveblks : integer;
 ineffptrs : integer;
 elong : integer
 currdate : integer;
 currtime : shortint;
 expansion : shortint;
 end;

C Layout
This is the C declaration for the Loadfile:

22 • Chapter 4 - Self-Describing Loadfile HowMessy 4.8 User Manual

struct Loadfile
{
 char database[26];
 char dataset [16];
 short dbnum;
 char dbtype[4];
 long capacity;
 long entries;
 long loadfactor;
 long secondaries;
 long maxblocks;
 long highwater;
 char pathtype[2];
 short blockfactor;
 char searchfield[16];
 long maxchain;
 long avgchain;
 long stddev;
 long expblocks;
 long avgblocks;
 long ineffptrs;
 long elong ;
 long currdate;
 short currtime;
 short expansion;
 char futurefields[128];
};

HowMessy 4.8 User Manual Chapter 5 - Installing HowMessy • 23

Chapter 5 - Installing HowMessy

Introduction
There are three steps to installing the HowMessy program on your system.

1. Restore the files from the tape.

2. Upgrade the Robelle account.

3. Install the correct version of HowMessy.

For steps 1 and 2, log on as Manager.Sys. If you received HowMessy along with
another Robelle product (e.g., Suprtool), you should follow the installation steps for
that product first. Then proceed directly to step 3 of the HowMessy installation. You
need to log on as Mgr.Robelle for step 3.

Step 1: Restore from the Tape
Restore all the files from the Robelle distribution tape:

:hello manager.sys
:file robtape;dev=tape
:restore *robtape; @.@.robelle; create {=reply on console}

Step 2: Upgrade the Robelle Account
Stream the job that sets up the Robelle account with the proper structure and
capabilities:

:stream robelle.job.robelle

After the job is complete, apply (or re-apply) a password to the Robelle account:

:altacct robelle;pass=something-hard-to-guess

Step 3: Install the Program
Our Bonus.Job.Robelle job stream installs this new version of HowMessy. No one
can be using HowMessy during installation. Warn people not to use these programs
for a while, and then stream our installation job:

24 • Chapter 5 - Installing HowMessy HowMessy 4.8 User Manual

:hello mgr.robelle
:warn @;please stop using HowMessy NOW!

:stream bonus.job {supply passwords}

Check the installation job $STDLIST. If anyone was using HowMessy or the other
files, or attempting to back them up, the job will fail. Chase away any users, ensure
that backup is not in progress, then stream the installation job again.

After the installation job completes, you are ready to use this new version of
HowMessy.

:run howmessy.pub.robelle

Documentation
The HowMessy documentation is available in Adobe Acrobat PDF format for easy
printing, and in Windows HTML Help format for easy viewing on-screen. You will
find these files on the Robelle website at http://www.robelle.com/library/manuals/.

HowMessy 4.8 User Manual Appendix A - Error Messages • 25

Appendix A - Error Messages

Introduction
The following error messages are produced by HowMessy. The first three are likely
to happen because of user errors in accessing HowMessy. The other errors are
caused by an invalid database structure or an internal error in HowMessy.

Error-1: Unable to open the database in mode-5 or mode-6
HowMessy has attempted to open the database with DBOPEN, but this has failed.
Two common reasons are that someone has the database open exclusively (e.g.,
mode-3) or the database name was not spelled correctly.

Error-2: You are not the database creator
HowMessy was not run by the database creator. Check that you are logged on as the
database creator in the same group as the database.

Error-3: Database name too long
Do not specify the group or account of the database.

Error-4: Dataset name too long
The dataset name specified does not exist in the database or it contains invalid
characters for a dataset name.

Error-5: Invalid dataset name
A dataset name longer than 16 characters was specified.

Error-6: Unable to open the Loadrept file
HowMessy was unable to open the Loadrept file. Check that there are no unexpected
file commands for the file Loadrept.

Error-7: Unable to write to the Loadrept file
HowMessy attempted to write a record to the Loadrept file, but the write failed. If
the Loadrept file has been redirected to a disc file, ensure that the disc file has not
filled up.

26 • Appendix A - Error Messages HowMessy 4.8 User Manual

Error-8: Unable to close the Loadrept file
HowMessy could not close the Loadrept file. If the Loadrept file has been directed to
a disc file, check for duplicate file names.

Error-9: Unable to purge Loadfile
To purge any existing Loadfile, HowMessy executes the MPE command:

:purge loadfile,temp

When this error appears, the MPE error message is also shown.

Error-10: Unable to open Loadfile
HowMessy was unable to open the Loadfile file. Check that there are no unexpected
file commands for the file Loadfile.

Error-11: Unable to close Loadfile
HowMessy could not close the Loadfile file. If the Loadfile file has been directed to
a different filename, check for duplicate file names.

Error-12: Unable to write labels to Loadfile
This error should never happen.

Error-13: Speed Demon error
HowMessy uses Speed Demon for access to each database. If you are a Suprtool
user, please see the Speed Demon User Manual for a description of any Speed
Demon errors. If you do not use Suprtool, contact Robelle.

Error-14: Unable to obtain current date
HowMessy was unable to get the current date from the system.

Error-15: Invalid PCL number. Only 1,4 or 6 are valid
An invalid PCL number was specified.

HowMessy 4.8 User Manual Glossary of Terms • 27

Glossary of Terms

capacity
The maximum number of entries a dataset may contain.

database
A collection of data files (detail datasets) and lookup files (master datasets) ,
organized and described by a root file, and accessed with a set of callable intrinsics.

dataset
An area of storage in a database. IMAGE allows a maximum of 199 datasets. A
dataset has an entry format and a structure. There are two basic structures: master
and detail datasets. IMAGE datasets are privileged files.

detail dataset
A dataset whose entries can have zero, one, or more than one search field. More than
one entry can have the same value for a search field. An entry's position within a
detail dataset is not related to the value of the search field.

master dataset
A dataset with one search field, and with at most one entry per search field value. A
master dataset provides fast access by search field values. There are two types of
master datasets: automatic and manual.

path
The structural relationship between a master dataset and a detail dataset. A path
relationship causes IMAGE to maintain chains of entries having the same search
field value. Paths may be sorted.

primary
Short for primary entry. An entry in a master dataset which is residing at the primary
address calculated for it by the hashing function.

28 • Glossary of Terms HowMessy 4.8 User Manual

primary address
The record number of an entry in a master dataset as derived from the value of the
entry's search field.

primary path
The detail path that will be optimized by database management tools. The default
primary path is the first unsorted path in the schema. A primary path is not the same
as a primary.

secondary
Short for secondary entry. A master entry that does not reside at the primary address
calculated for it.

sort field
A field in a detail dataset (not the search field) whose value is used to sort the chain
of the search field in ascending order.

HowMessy 4.8 User Manual Index • 29

Index

A

Ave Chain 10–11, 13, 14
Avg Blocks 11, 15

B

Blk Fact 9

C

C declaration of loadfile 21
capacity

dynamic expansion 2, 8
Capacity 1, 2, 7–10, 7–10, 12–16, 12–16, 20–21, 20–21
changing key types 16
clustering 9, 16
COBOL declaration of loadfile 20

D

Detail Dataset Solutions 16
documentation 2, 24
dynamic expansion 2, 8

E

Elongation 10–12, 10–12, 14, 16, 20–21, 20–21
Entries 7–16, 7–16, 20–21, 20–21
Expd Blocks 11

H

Highwater 7, 9, 12–16, 12–16, 20–21, 20–21

I
Ineff Ptrs 9, 11–14
installation 23–24, 23–24

L

Load Factor 8, 10, 16, 20
loadfile 19–21, 19–21, 26

C declaration 21
COBOL declaration 20
Pascal declaration 21
Suprtool layout 19

M

Master Dataset Solutions 16
Max Blks 9–10, 13
Max Chain 10, 13–14

P

Pascal declaration of loadfile 21

S

Search Field 7, 9–13
Secondaries 1, 8–9, 8–9, 11–13, 11–13, 16, 20–21, 20–

21
solutions

detail datasets 16
master datasets 16

Std Dev 11, 13
Suprtool layout of loadfile 19

	Chapter 1 - Welcome to HowMessy
	Introduction
	Authorization to Use HowMessy
	Compatibility-Mode and Native-Mode
	MPE/iX
	Documentation
	User Manual

	Highlights in 2.9
	Dynamic Dataset Expansion (MDX and DDX)
	Jumbo Datasets

	Chapter 2 - Accessing HowMessy
	Introduction
	Converting DBLOADNG Job Streams
	Partial Database Reports
	PCL Reports
	System JCW
	SPDEPREFETCH JCW

	Chapter 3 - Applying HowMessy
	Introduction
	A Sample HowMessy Report
	Explanation of HowMessy Columns
	V or XL
	Data Base
	Run On
	Data Set
	Type
	Capacity
	Entries
	Load Factor
	Secondaries
	Max Blks
	Highwater
	Blk Fact
	"S"
	"!"
	Search Field
	Max Chain
	Ave Chain
	Std Dev
	Expd Blocks
	Avg Blocks
	Ineff Ptrs
	Elongation

	Analyzing HowMessy Reports
	MCUST Automatic Master
	MSTATE Manual Master
	DNAME Detail Dataset
	DRECV Detail Dataset
	PRTBAL Detail Dataset
	POSTHIST Detail Dataset

	Resolving Problems
	Master Dataset Solutions
	Detail Dataset Solutions
	Using DBUNLOAD and DBLOAD
	Using Adager
	Using Suprtool
	Using DBMGR
	Using DBGENERAL
	Writing Custom Programs

	Chapter 4 - Self-Describing Loadfile
	Introduction
	Form of the Loadfile
	Suprtool Processing
	COBOL Layout
	Pascal Layout
	C Layout

	Chapter 5 - Installing HowMessy
	Introduction
	Step 1: Restore from the Tape
	Step 2: Upgrade the Robelle Account
	Step 3: Install the Program
	Documentation

	Appendix A - Error Messages
	Introduction
	Error-1: Unable to open the database in mode-5 or mode-6
	Error-2: You are not the database creator
	Error-3: Database name too long
	Error-4: Dataset name too long
	Error-5: Invalid dataset name
	Error-6: Unable to open the Loadrept file
	Error-7: Unable to write to the Loadrept file
	Error-8: Unable to close the Loadrept file
	Error-9: Unable to purge Loadfile
	Error-10: Unable to open Loadfile
	Error-11: Unable to close Loadfile
	Error-12: Unable to write labels to Loadfile
	Error-13: Speed Demon error
	Error-14: Unable to obtain current date
	Error-15: Invalid PCL number. Only 1,4 or 6 are valid

	Glossary of Terms
	capacity
	database
	dataset
	detail dataset
	master dataset
	path
	primary
	primary address
	primary path
	secondary
	sort field

	Index

