
Qedit Scripting Language 5.8.10

User Manual

by Robelle Solutions Technology Inc.

Copyright 1996-2004 Robelle Solutions Technology Inc.

Qedit is a trademark of Robelle Solutions Technology Inc. Windows is a trademark of Microsoft
Corporation. Other product and company names mentioned herein may be the trademarks of their
respective owners.

Updated Monday, December 15, 2008

Robelle Solutions Technology Inc.
7360 – 137 Street, Suite 372

Surrey, BC, Canada V3W 1A3
Toll-free: 1.888.robelle

Tel: 604.501.2001
Fax: 604.501.2003

E-mail: support@robelle.com
Web: www.robelle.com

Qedit Scripting Language User Manual Contents • i

Contents

Introduction 1
What is Qedit Scripting Language? ...1

Who Can Use QSL? ..1
How Do I Write a Script? ..1
How Do I Run a Script? ..2

What’s New in This Version ...2

QSL Foundations 5
Overview of Qedit Scripting Language ...5
Writing a Script ...5
Saving a Script...5
QSL Language Elements ...6

Statements ...6
Syntax Elements ..6
Constants and Values ..7
Records and Lists ..9
Objects...11

Expressions..11
Arithmetic Expressions ...12
Boolean Expressions ...12
String and List Operations...13
Comparison Operators...14
Type Coercion ...14

Script Structure ..15
Script Name...15
Properties and Methods ...15
Subroutines and Handlers..15

Controlling the Flow..16
Conditionals ..16
Iteration ...17
Exception Handlers ...18
Subroutines..19
Timeouts..22
Stopping Execution ...23

The Script Environment...23
Methods and Subroutines ..23
Loading Scripts When Qedit Starts ...23
Running Scripts from the Command Line...24
Using Scripts to Add Commands ..24

Installing Scripts 25
Script Libraries ..25

Robelle Public Library ..25

ii • Contents Qedit Scripting Language User Manual

Contributed Library ...26
Where Are They?...26

Scripts From Robelle...26
Company-wide Scripts ..26
Personal Scripts ...26
Specialized Subdirectories...28

Managing Loaded Scripts .. 29
Macros and Common Functions ..30

Some Basic Scripting Operations 33
Where To Start...33

The QEDIT Application Object ..33
File Operations ..33

Creating a File ...33
Opening a File ...34
Printing a File ..34
Saving a File..34
Closing a File...34

Editing Files...35
Adding Text...35
Deleting Text...35
Replacing Strings ..36
Copying, Cutting and Pasting Text..36

Selecting and Retrieving Text..37
Retrieving Text in Known Location..37
Moving the Cursor...38
Finding Text ..40
Retrieving Selected Text ...40
Text Within Text ...41

Navigating Through Directories ..41
Local Directories ...42
Host Directories...42
Using the Directory Iterators ...43

Executing Host Commands ...45
Host Commands Environment...45
Starting Execution ...46
Checking Results ...46
Redirecting Results..47
To Wait or Not To Wait ..48
Is It Really Executing? ..49
Stopping Execution ...49

Dealing with Connection Templates..50
Find a Connection Template..50
Create a Connection Template ..51
Delete a Connection Template ..51
Getting All Connection Templates ..52
Clone a Connection Template ...52

Executing and Testing Scripts 55
The Script Menu ..55
Controlling Script Execution ...55

Run Button ..56
Pause Button..56
Stop Button..57

Qedit Scripting Language User Manual Contents • iii

Step-through Button ..57
Source Code Window Expansion ..57

Testing Your Scripts ..58
Interactive Debugging ...58

Displaying Informative Messages ...58
Using a Cancel Button...59
Prompting For Input ..60

Logging Messages ...61
Log Window Expansion ..61

Debugging Tips ...61
Undo Your Changes ..61
Checking Identifiers ..61
Displaying Invisibles ...62
Infinite Loops ..62

Getting the Most Out of Scripting 63
Coding Tips and Techniques ...63

Checking Results of a Search ..63
Checking the Cursor ..63
Writing For Reusability...64
Directory Iterators ...65
Limiting Random Number Range ...65
Is the File Opened?..65
Has the File Been Opened? ...66

With Performance in Mind ..66
Is There a Selection? ...67
How Long Is The Selection? ...67
Working With Single Characters...67
Overloading Parameters ..68
Variables Versus Properties ..68
Short-circuit Evaluation...68

Off-the-Shelf Solutions..69
Initializing a Test File..69
Comparing Two Files ..69
Insert a Signature or a Timestamp...71
Insert a Rectangular Selection ...72
Fill a Rectangular Area With Asterisks ...73
Draw a Box..75
Copying Files Between Systems ...77
Prompt Before Replacing ..77
Append Text at End of Lines...79
Displaying Information From Directory Iterators ...80

Robelle Script Library ...82
Sort Lines ..82
List Lines...83
MPE Compilers ...84

Reference 87
Overview ...87
Script Attributes...87

Name ...87
Option Private..87
Property ...88

Control Statements...88

iv • Contents Qedit Scripting Language User Manual

Break ...88
Call ..88
Error ..88
IF, Else and Endif ..89
Invoke..89
On Command and Endon ..89
Repeat and Endrepeat ..90
Return ..90
Stop ...90
Sub and Endsub ...90
Try and Recover ..91

Built-in functions ...91
Character()...92
Code()..92
Dialog() ...92
Downshift() ...93
Exists() ..93
Integer() ...93
Length() ...93
LTrim()..93
Num() ..93
Pos() ..94
RTrim()..94
String() ..94
Trim() ..94
Typeof()...94
Upshift() ..95
Writelog() ..95

Built-in Arithmetic Functions..95
** (exponentiation)..95
Abs()..95
Acos() ..95
Asin()... 95
Atan() ..96
Ceil()..96
Cos() ..96
Floor()..96
Fp() ..96
Integer() ...96
Ip()...97
Ln()..97
Log()..97
Mod()...97
Randseed() and Rand() ..97
Sin()...97
Sqrt()..98
Tan() ..98

Objects, Methods and Properties 99
Overview ...99

What Are Properties? ..99
What Are Methods?...99
Making copies of an object?.. 101

Application Object... 101
Application Constants ... 101

Qedit Scripting Language User Manual Contents • v

Application Properties ... 103
Application Methods ... 105

Document Objects ... 118
Document Constants.. 118
Document Properties ... 118
Document Methods ... 123

DateTime Objects .. 148
Creating a DateTime Object .. 148
DateTime Constants .. 149
DateTime Properties.. 150
DateTime Methods .. 151

Connection Objects.. 156
Creating a Connection Object.. 156
Connection Properties ... 156
Connection Methods.. 158

Iterator Objects .. 160
Local Directory Iterator... 160
Host Directory Iterator .. 161
Connection Template Iterator.. 162

ConnectionTemplate Objects... 163
ConnectionTemplate Properties .. 163
ConnectionTemplate Methods... 164

Properties and Methods Cross-Reference .. 165

Error Messages 171
Handling Errors ... 171

Error Numbers... 171
File Errors .. 172

Appendix A - Earlier Highlights 173
Overview of Appendix A - Earlier Highlights... 173

Highlights in Version 5.0.10 ... 173
Highlights in Version 5.0 .. 173

Glossary of Terms 175

Index 177

Qedit Scripting Language User Manual Introduction • 1

Introduction

What is Qedit Scripting Language?
Qedit Scripting Language (QSL) is a programming language that you can use to
control Qedit for Windows objects. You can write programs in QSL to:

• automate repetitive file manipulation tasks

• perform complex file edits under program control

• automate Qedit's file handling

• add new commands to Qedit.

• customize Qedit for your environment.

You can use one of the scripts supplied by Robelle or you can write your own
scripts. Scripts can be automatically loaded, ready to be executed, they can be loaded
as you need them or you can simply execute them one by one. You can also write
scripts and make them appear as commands on Qedit's Script menu.

Who Can Use QSL?
Anyone who has a need for additional functionality to become more productive with
Qedit for Windows can use QSL. Enthusiastic end-users could probably find their
way in and learn to write simple QSL scripts. However, because it is a programming
language, people with programming knowledge such as Visual Basic application
developers, would probably be more at ease writing QSL scripts. They could write
them and make them available to other users.

How Do I Write a Script?
Any local or host file can be a script. There is nothing special about them. If you
have a file that contains some text, you can try to run it as a script. Of course, if the
file is not a script, you will likely get all kinds of compile errors.

If you want to start a new script, simply create a new file and start typing QSL
statements.

2 • Introduction Qedit Scripting Language User Manual

How Do I Run a Script?
Run tool on the Script Control
dialog box.

There are a number of ways you can execute a script. All the commands you need
are on the Script menu. If you want to execute the active document, you can use the
Run command on the menu or bring up the Script control dialog box and use the
Run tool.

Run tool on the Script Control dialog box.

If the script has been pre-loaded, its name should appear on the Script menu. The
example below shows how you can access QSL scripts we provide as part of the
Robelle submenu: MPECompile, ListAll, ListCopy, ListInclude, ListUse and
Sortlines. Notice that all these scripts are also a submenus. This means they all
have commands at a lower level. They do not have to be. ListCopy could have been
a command in its own right.

Script menu with pre-loaded scripts

Scripts can be loaded automatically when Qedit for Windows starts up. You simply
need to put these scripts in pre-assigned directories on your PC. Once they are loaded
and if they contain On command statements, they become Qedit commands.

If the script you want is not loaded automatically, you can also use the Manage
scripts command to display the Scripts dialog box. From there, you can add a
script to the list. If they contain On command statements, next time you display the
Script menu, the added script should appear in the list. If they do not contain On
command statements, the subroutines inside the script become available to other
scripts.

You can also run scripts indirectly using the Invoke() statement or by calling
other scripts' methods.

What’s New in This Version
The current version of Qedit Scripting Language is 5.8.10. There has been no
changes to the language since 5.0.10.

Qedit Scripting Language User Manual Introduction • 3

Highlights in Version 5.8.10
Starting with version 5.8.10, the Qedit Scripting Language documentation (this
manual) is available in HTML Help formats. The documentation is still available in
Windows Help (winhelp) format.

For a history of development highlights, see "Appendix A - Earlier Highlights" on
page 173.

Qedit Scripting Language User Manual QSL Foundations • 5

QSL Foundations

Overview of Qedit Scripting Language
This chapter describes the basics of QSL: the language syntax and the structure of
QSL programs.

Writing a Script
Qedit can execute any ordinary text file as a script. It does not matter whether the
script is local or on a server, and you do not need a separate script editor application.
Let's see how easy it is to create and execute a script:

1. Select the File menu, point to New, and click Local
2. Type in

result = dialog("This is my first script!");

3. Select the Run command on the Script menu.

While the simple script above may not seem very useful, it illustrates several QSL
characteristics.

First, QSL consists of statements terminated by semicolons. The language is not
case-sensitive, except in quoted strings where case is preserved. Spaces and line
breaks may be used freely for readability. A QSL script may be a stand-alone series
of statements, or may be part of a larger system of subprograms. This is covered in
more detail later.

Saving a Script
If you have written a script and you want to preserve it for future use, simply write it
to disk using Qedit for Windows' Save or Save As commands. The file can reside
on the local PC or any of the connections available. For PC files and UNIX hosts,
you can specify a file extension to easily identify them. We suggest you use a .qsl
extension. However, Qedit does not enforce this so you can pick your own extension.

If you decide to create private scripts, you have to use the Save compiled script
command of the Script menu. Private scripts can only be saved as local files. These
files must have a .qsc extension. Because these are saved in compiled form, they
can not be read nor modified by other users. This is a protection when you have to

6 • QSL Foundations Qedit Scripting Language User Manual

distribute scripts and want to ensure the original source can not be tampered with.
You should also look at the

QSL Language Elements
The examples illustrating QSL language elements have been kept as simple as
possible, but you may want to refer to the complete description of QSL statements in
"Reference" on page 87 while reading this section.

Statements
QSL scripts consist of one or more statements contained in a text file. The section
called "Reference" on page 87 lists all QSL statement types. QSL includes
assignment statements, as well as statements for program control, program structure,
and debugging.

Statements are generally separated by semicolons. Hitting the ENTER key does not
indicate the end of a statement. This means that a single statement can span multiple
lines without causing a compile error.

There are instances where QSL assumes a semicolon. Some statements come in pairs
to indicate the start and end of a logic block. These statements are:

IF and ENDIF

REPEAT and ENDREPEAT

SUB and ENDSUB

ON and ENDON

TRY and ENDTRY

Because ENDIF, ENDREPEAT, ENDSUB, ENDON and ENDTRY are sort of
terminators themselves, a semicolon is optional.

Since the semicolon explicitly indicates the end of a statement, you can also type
multiple statements on a single line as in:

stringmsg = "No selected text"; result = dialog(stringmsg);

Although this is perfectly legal, this coding style reduces readability a lot.

Basically, all language elements except strings enclosed in quotes, are not case
sensitive. This means that MyVariable and MYVARIABLE are really pointing at
the same data. Similarly, dialog and DiaLog both refer to Qedit's Dialog()
function .

Character Set
QSL programs can be written using any supported language character set. Strings are
stored in the Windows character set and are translated when entered into documents
or sent to remote hosts.

Syntax Elements

Keywords
Keywords are reserved words that have special meaning to the QSL compiler. QSL
does not prevent you from using a keyword as an identifier. However, doing so can

Qedit Scripting Language User Manual QSL Foundations • 7

be confusing for the developer. Keywords contain only ASCII alphabetic characters.
Here is the current list of reserved words.

And For Property To

By From Recover Try

Else If Repeat Until

Endif In Return While

Endrepeat Name Stop With

Endsub Not Sub Xor

Endtry On Then

Error Or Timeout

Identifiers
Identifiers must start with an alphabetic character and may contain any sequence of
alphanumeric characters and underscores. Note that hyphens are not allowed.
Identifier names can have up to 255 characters.

Comments
QSL scripts may contain comments for documentation and readability. The language
supports both line-terminating comments and in-line comments. A pair of hyphens,
"--", in a line of a script causes the remainder of the line to be treated as a comment,
unless the double hyphen is inside a string constant. For example,

string = "Hello World!"; -- Here is a comment
string = "This is not a –- comment!";

In addition, Qedit ignores text between pairs of angle brackets, "<<" and ">>", which
can be used for intra-line and multi-line comments.

area <<Inline comment>> = height * width;

<<

this is a multi-line comment

>>

Constants and Values
QSL supports different types of data. Any variable can take on values of different
data types over time. It acquires the type of whatever is assigned to it. Qedit takes
care of type coercion transparently. However, there are cases where you might have
correctly assign a value to be certain the variable ends up with the correct type.

Data Types
You do not have to declare variables ahead of time. Qedit declares a variable when
you first reference it. The assignment operator is an equal sign "=". The data type is
based on the assigned value. Qedit supports 6 different data types:

Type Description
Undefined Variable does not have a type

Integer Integer value, no decimals

8 • QSL Foundations Qedit Scripting Language User Manual

Float 64-bit IEEE floating point

String Windows character string

Record Data structure or list

Object Qedit objects

You can check a variable's data type using the Typeof() function. In most cases,
you do not have to worry about data type conversion. Qedit changes data type
dynamically. If you wish to explicitly change the type of a variable, you can use one
of the functions to do type coercion. The string() function is probably the one
you will use most often.

Numbers
Numbers are sequences of digits, which may optionally contain a decimal point.
QSL allows only decimal numbers.

Named Constants
We have assigned names to constants that were frequently used. True is a named
constant and can be used to check for the value 1. If used in a condition criterion, it
also designates any non-zero value. False is the named constant for the value 0.

String Constants
A string constant is introduced by either a single quote (apostrophe) or a double
quote. The same delimiter must be used to terminate the character string. If it is
necessary to include the string delimiter within the string, it should be doubled:

"""What?"" she exclaimed."

or alternatively, the string should be started with a different delimiter as in

'"What?" she exclaimed.'

String constants may include tabs and nonprintable characters by using the special
escape sequences shown below. The escape sequences allow you to place any
possible character value in a character string. An escape sequence is introduced by a
pair of question marks.

Sequence Meaning
??a Alert character, decimal value 7

??e Escape character, binary value 27

??n Line feed, decimal value 10

??r Carriage return, decimal value 13

??t Tab, decimal value 9

??$dd A character with the hexadecimal value dd

??%ddd A character with the octal value ddd

??ddd A character with the decimal value ddd

??^c The character obtained by using the control
key with character c. For example, the
sequence ??^y yields a decimal value of 25.
The case of c does not affect the binary
value of the sequence

Qedit Scripting Language User Manual QSL Foundations • 9

??c For any character not described above, the
sequence ??c is equivalent to that
character. This can be used to insert a
quotation delimiter

Escape sequences containing numeric values are terminated by any character that is
not valid for that type of number. For example, the octal escape sequence ??%59
produces a single character with a decimal value of 5, because 9 is not a legal octal
character. Terminating a numeric escape sequence in this manner is not considered
an error.

Decimal escape sequences always represent characters in the Windows character set
even if the script resides on a non-Windows connection.

To code a string with two or more question marks in a row, all but the first or last
must be escaped; for example, ???? yields two question marks.

Extended Characters
String constants may contain extended characters, that is characters not in the basic
ASCII character set. When a script resides on a local disc drive or is executed from a
new local file, extended characters are assumed to be in the Windows character set.
When a script resides on a host computer, Qedit translates character strings from the
host computer's character set to the Windows character set. This implies that any
character used in a remote script must have a representation in the Windows
character set. If a script contains characters that can't be represented in Windows, the
results are undefined.

Records and Lists
Many operations and functions in QSL use records to specify input and to contain
output. Records are lists of values which may optionally be named. Constant lists are
written by enclosing them in braces "{" and "}". Individual elements in the list are
separated by commas.

A list can be made up of constant values only:

myList = {1, 4, 9, 16, 25} -- A simple list of 5 elements

Elements in this list can only be referred to using a subscript or using the
Repeat...In List statement. Subscripts in QSL normally start at 1 and are
enclosed in square brackets "[" and "]".

newVar = myList[2]; -- returns the value 4

A list can also be constructed with named values. The name and its corresponding
value are separated by a colon. The general syntax to define a named element is:

{name1: value1, name2: value2, ...}

For example,

myList = {connection: "System 5", filename: "FOO"}
-- A list of named values

myList2 = {start: {line: 5, column: 1}, end: {line: 15, column: 12} }
-- A List with nested lists

If an element in a record has a name, QSL statements can refer to it by name. A
period is used to identify named elements within records.

10 • QSL Foundations Qedit Scripting Language User Manual

myList = {connection: "Omaha", filename: "TXMAY"};
myConn = myList.connection; -- Returns "Omaha"
myVar = myList2.start.line; -- Returns 5

Otherwise, the element can only be referred to by its subscript as in simple lists.

myconn = myList[1]; -- Also returns "Omaha"
myList.connection = "Paris"; -- Sets first element
myList[1] = "Paris"; -- Also sets first
myVar = myList2[2][2]; -- Returns 12. Equivalent to End.Column

Initializing Records And Lists
In all cases, when you initialize a record, the element list must include constants
only. It can not contain variable names as in:

LineNumber = 1;
ColumnNumber = 20;
mySelection = { line: LineNumber, column: ColumnNumber }; -- Invalid

This is the correct way to do it:

mySelection = {}; -- Specifies that this is a record
mySelection.line = 1; -- Initializes first named element
mySelection.column = 20; -- Initializes second named element

Empty records are allowed; they are represented by an empty pair of braces. In
addition to numbers, strings and other records, records may contain objects. A record
can contain elements of different types.

myList = {}; -- Create an empty list
myList[1] = 1; -- First element is numeric
myList["TWO"] = "two"; -- Second element is a named string value
coordinates = { line: 1, column: 20 };
myList[3] = coordinates; -- Third element is a nested list
result = dialog(string(myList));

The dialog box would show:

{ 1, TWO: "two", {line: 1, column: 20}}

Using Nested Records
As shown in "Initializing Records And Lists" on page 10, a record can contain
elements of any type including other records. However, the record structure will be
different depending on how you add record elements. Let's say you have 2 record
variables:

MainRecord = {}; -- Main empty record
NestedRecord = { item1: 1, item2: 2 };

The concatenation operator "+" adds elements to a record. It does not matter if there
are elements with the same name already in the record. Thus, after executing the
following statement,

MainRecord = MainRecord + NestedRecord;

MainRecord contains:

{ item1: 1, item2: 2 }

Executing the same statement a second time would set MainRecord to:

{ item1: 1, item2: 2, item1: 1, item2: 2 }

There are 2 ways to create nested records. The first option is to qualify the target
record with a subscript.

Qedit Scripting Language User Manual QSL Foundations • 11

MainRecord[1] = NestedRecord;
MainRecord[2] = NestedRecord;

MainRecord then contains:

{ {item1: 1, item2: 2}, {item1: 1, item2: 2} }

Notice the main record now contains 2 record elements which contain 2 elements
each. To reference individual elements, you would have to use subscripts as in:

newVar = MainRecord[2].item2;

When using subscripts, you have to ensure there is no gap in the subscript sequence.
For example, the following code segment would not create nested records #3 or #4.
MainRecord would still contain only 2 nested records.

MainRecord[1] = NestedRecord;
MainRecord[2] = NestedRecord;
MainRecord[4] = NestedRecord; -- Invalid. Subscript 3 is missing.

Note that no error is reported in this case. The information is simply not stored.

The second option is to assign a name to nested records instead of subscripts.

MainRecord["Nest1"] = NestedRecord;
MainRecord["Nest2"] = NestedRecord;

MainRecord would then contain:

{ Nest1: {item1: 1, item2: 2}, Nest2: {item1: 1, item2:
2} }

The names can be anything you want and you do not have to worry about gaps.
However, if a name already exists, its value is going to be replaced.

Objects
Most of the things that you can manipulate with QSL take the form of objects. An
object can have both data (properties) and code (methods) associated with it. For
example, when you open a new file with QSL, the function which creates the file
returns a file object:

resultFile = newfile(); -- Returns a file object
resultFile.Insert("First line."); -- Add text

Objects have properties that can be examined and set, as well as methods that can be
called. The example above calls the file object's Insert method to insert text. The
section called "Reference" on page 87 provides a complete list of the methods and
properties for all QSL objects.

Scripts themselves are objects and can have properties and methods. These become
important when you instruct Qedit to load scripts and make them available to other
scripts.

Expressions
Qedit expressions can involve not only numeric quantities but strings, lists and
records as well. Some operators apply only to certain data types, but others can be
used with any Qedit data type.

12 • QSL Foundations Qedit Scripting Language User Manual

Predicate results
Some operations, such as comparisons, are predicates: they apply a test and return a
boolean, True or False, value. In a Qedit script, an expression returning a value of
TRUE yields a numeric value of 1, while a FALSE result yields a numeric value of 0.
Statements, such as IF and REPEAT that test for boolean values, can test any
numeric expression; a non-zero value is equivalent to TRUE. However, it is good
practice to make comparisons to 0 explicit:

if lineCount <> 0 then -- preferred
if lineCount then -- works, but less clear

Arithmetic Expressions

Number Format
Qedit manipulates all numbers using the highest-precision data type available on the
client platform. For most Qedit clients, this is a 64-bit IEEE real number. Qedit
number objects provide an INTEGER function in order to extract only the integer
part of a number, when you need to do so explicitly. Qedit automatically converts
numbers to integers by rounding when a number is used in a context requiring an
integer.

Arithmetic Operations
In addition to the standard arithmetic operators, you can take advantage of Qedit's
object orientation by manipulating various properties of numeric objects.

Operator Operation
Plus sign "+" Addition

Hyphen "-" Subtraction

Asterisk "*" Multiplication

Slash "/" Division

Two asterisks "**" Exponentiation

Arithmetic expressions are evaluated from left to right. Multiplication and divisions
are executed first. Additions and subtractions are done next. Finally, exponentiation
is done last. You can use parentheses to change the order of precedence.

Qedit also provides error handling for numeric expressions, provided that the client
platform offers suitable numeric library facilities. Numeric underflow causes Qedit
to substitute a zero value, while division by zero causes script execution to halt
unless a RECOVER clause is in effect. A numeric overflow returns, once converted to
a string, a value of 1.#INF.

Boolean Expressions
Boolean expressions consist of boolean or numeric values and the operations AND,
OR , XOR and NOT. The construction

NOT expression

negates the boolean value of the expression. The expression

Qedit Scripting Language User Manual QSL Foundations • 13

expr1 AND expr2

is true if and only if both expr1 and expr2 are true, while the expression

expr1 OR expr2

is true if either expr1 or expr2 is true. Qedit also provides an exclusive or operation,
so that

expr1 XOR expr2

is true if only one of expr1 and expr2 is true.

QSL uses short-circuit evaluation when checking conditions. This means that in
complex conditions, control is transferred as soon as Qedit is able to determine the
outcome. It also means that not all conditions will be checked every time. In the case
of an AND condition, if the first expression is false, Qedit knows the overall
condition will be false, no matter what the other expression evaluates to. In the case
of an OR condition, if the first expression is true, Qedit knows the overall condition
will be true, no matter what the other expression evaluates to.

String and List Operations
Qedit provides only one string operation, concatenation, indicated by the plus sign
"+" operator. Concatenation can also be used to join two lists, or to add an item to a
list. Strings and lists both support many compound item references, providing a rich
variety of string manipulations.

myString = "ab"; -- Initialize string variable
myString = myList + "CD"; -- Appends new string, result is "abCD"

myList = { 1, 2 }; -- Initialize list variable
myList = myList + { 3, 4 }; -- Appends new elements

-- Result is { 1, 2, 3, 4 }

Compound Item References
Compound objects such as strings and lists respond to subset selection messages,
which permits the script to reference individual parts of the compound item. Several
other messages perform simple searches. Other kinds of objects may also respond to
these messages where appropriate.

Subscripting
A QSL script uses subscripts to select portions of compound items such as strings or
records. Subscripts have the form

[element]

or

[startelement:endelement]

where value is a numeric expression giving the ordinal number of the element to
extract. Subscripts start at 1. If you specify only one element number, Qedit extracts
only one character or list element. If you specify a start and end element, Qedit
extracts all the elements between the 2 numbers including the start and end elements.

filename[2] -- extract the second character
filename[1:8] -- Characters 1 through 8 as a string
connectionList[1] -- returns one item
connectionList[2:5] -- returns a list of elements 2 to 5 inclusive

The value can also be a string to select a field from a list:

14 • QSL Foundations Qedit Scripting Language User Manual

editTarget = {name: "S979", file: "EXTR001"} ;
fileName = editTarget["file"]; -- Gets EXTR001

Selection on lists
When you apply a range selection to a list, Qedit returns another list containing only
those items in the range. For example:

{"Peter", "John", "Paul", "Mary", "Rafael"} [2:4]

yields the list

{"John", "Paul", "Mary"}

which contains elements 2, 3 and 4 of the original list.

Finding an Index
A script that needs to find the position of an element in a list or string can use the
POS function. POS returns the index, relative to 1, of a substring or list item, or 0 if
the substring or list item isn't found:

POS("Quick brown fox", "Quick") -- Returns 1
POS("Quick brown fox", "fox") -- returns 13
POS({"Quick", "brown", "fox"} , "fox") -- returns 3
POS({2, 3, 4} , 5) -- returns 0

Comparison Operators
Qedit provides the usual collection of comparison operators. Most of the
comparisons are meaningful only on numbers and strings, but you can test any two
objects for equality.

Operator Applies to True when
Greater than ">" Numbers, strings Left operand is greater than

right operand

Greater than or equal to ">=" Numbers, strings Left operand is greater than
or the same as right operand

Less than "<" Numbers, strings Left operand is less than
right operand

Less than or equal to "<=" Numbers, strings Left operand is less than or
the same as right operand

Equal to "=" Any pair of items of similar
type

Left and right operands are
the same

Not equal to "<> Any pair of items of similar
type

Left and right operands are
not the same

Type Coercion
Sometimes, it's convenient to change the representation of a value during script
execution. A common example is coercing some non-string value to a string in order
to insert it in a file or use it in a string comparison. Qedit uses the type name as a
function to introduce a type coercion:

type(expression)

For example, to convert a number to a string, use

Qedit Scripting Language User Manual QSL Foundations • 15

string(5) -- returns "5"

Any object can be coerced to a list, in which case it becomes a one-element list with
that object as the only element.

localfile = open("C:\personal\diary.txt");
locallist = {} + localfile;

Script Structure
All but the very simplest scripts are usually broken up into subroutines. Subroutines
are sequences of statements that have a name, can have local variables, and can
return a value. In addition, any script intended for other than one-time use probably
has a name, and may have properties as well.

Script Name
Every script has a name by which commands and other scripts can refer to it. If you
don't specify a script name, Qedit uses the name of the script's source file instead.
Specify the script name by using the Name statement:

name Utilities;

Script names follow the same rules as other QSL identifiers: they must begin with an
ASCII letter, and consist of ASCII letters, digits, and underscores.

Properties and Methods
Since they are objects, scripts can have properties and methods. A script property is a
variable that is global not only within the script, but outside the script as well.
Specify properties using the Property statement:

property resultDirectory = "c:";

A property may have an initial value, as shown above. The initial value must be a
constant. Each script may have any number of properties.

Methods associated with a script are all the subroutines declared within it.

Subroutines and Handlers
Subroutines are sequences of statements that can be referred to by name, and that can
return a value. A handler is a special kind of subroutine that Qedit runs when certain
events occur.

16 • QSL Foundations Qedit Scripting Language User Manual

sub Quadratic(a, b, c)
-- Compute roots of equation
-- a*x**2 + b*x + c = 0
-- Return a list of all real roots

returnValue = {} ; -- Variable for return value is a list

discrim = b**2 - 4 * a * c;
if discrim = 0 then

returnValue = returnValue + 0;
else

returnValue = returnValue + ((-b + sqrt(discrim)) / (2 * a);
returnValue = returnValue + ((-b - sqrt(discrim)) / (2 * a);

endif

return returnvalue;

endsub

This subroutine returns a list that may be empty, or may contain one or two elements.
The caller must be prepared to deal with each of these cases.

A handler is also a subroutine, but is introduced with the On statement instead of a
Sub statement:

on command "Update Change Log"
whichFile = Currentfile();
whichFile.Insert

(text: {"Last changed " + string(datetime()) + " by TLA", , ""}
at: {Line: 1, Column: 1});

endon

This handler is added to Qedit's Script menu and appears as "Update Change
Log".

Subroutines may be located anywhere in a QSL script, though they are traditionally
placed together at the beginning or the end of the script. If you choose to intersperse
subroutines and main script code, Qedit collects all the main script code together and
treats it as if it were a single block of code.

All subroutines in a script are visible from other scripts as script methods. External
scripts may invoke those methods by using the external script's name as the name of
the object. For example if a script named Utilities has a subroutine named
Quadratic, a second script can access Quadratic by calling
Utilities.Quadratic(1, 2, 3).

Controlling the Flow
Qedit normally executes script statements linearly, from beginning to end. However,
several script statements can change this behavior.

Conditionals
Scripts use the IF/THEN/ELSE/ENDIF construct to execute certain statements
conditionally. For example, the following subroutine opens a file that is to be used as
a change log, or creates a new one if none exists:

Qedit Scripting Language User Manual QSL Foundations • 17

if result.EnteredText = "START" then
changeLog = newfile(connection: whichConnection);
changeLog.Insert(list("Change log started on " +

string(datetime), ""));
changeLog.SaveAs("CHANGES.log");

else
changeLog = open(connection: whichConnection,

filename: "CHANGES.log");
endif

Every IF statement must have a corresponding ENDIF.

Iteration
Qedit's REPEAT statement causes a statement or a group of statements to be
executed repeatedly until some condition is met, or until a list is exhausted. The
group of statements to be repeated must end with an ENDREPEAT statement. Here
are some of the possible syntax for REPEAT.

REPEAT WHILE Construct
Syntax:

REPEAT WHILE condition

The block of statements is repeated while the condition is met. If the condition is
false to start with, the block is not executed.

resultlist = {}; -- Create a record variable

findresult = localfile.find(regexp: "G...n");
repeat while findresult -- True is assumed

resultlist = resultlist + localfile.getselectedtext();
-- Add the string to the list

findresult = localfile.find(regexp: "G...n");
-- Search for next occurrence

endrepeat

result = dialog("List of matches:" + string(resultlist));

REPEAT UNTIL Construct
Syntax:

REPEAT UNTIL condition

The block of statements is repeated until the condition is met. The condition can be a
simple or complex expression. The block always executes at least once.

resultlist = {}; -- Create a record variable

repeat until findresult = false -- True is assumed
findresult = localfile.find(regexp: "G...n");

-- Search for next occurrence
if findresult then

resultlist = resultlist + localfile.getselectedtext();
-- Add the string to the list

endif
endrepeat

result = dialog("List of matches:" + string(resultlist));

REPEAT FOR Construct With Numbers
Syntax:

18 • QSL Foundations Qedit Scripting Language User Manual

REPEAT FOR variable FROM start TO end

REPEAT FOR variable FROM start TO end BY step

Variable must be a name. The variable does not have to exist already. Start, End and
Step can numeric constants, numeric expressions or predefined numeric variables.

Variable is set to the initial value specified by Start. The block of statements is
executed and Variable is incremented by the value of Step. If Step is not specified, a
value of 1 is used. A step value of 0 causes a run-time error.

If Start is less than End, the block is repeated until the value in Variable is greater
than End. Thus, the value of Step should be positive. If Start is greater than End, the
block is repeated until the value in Variable is less than End. Thus, the value of Step
should be negative.

localfile = newfile();
lines = {};

repeat for linenumber from 1 to 10
lines = lines + ("Line #" + string(linenumber));

endrepeat

localfile.insert(lines);

This script creates a new local file with 10 lines formatted as:

Line #1
Line #2
...
Line #10

REPEAT FOR Construct With a Record
Syntax:

REPEAT FOR variable IN list

The block of statements repeats for each item in the list. Variable is set to each list
element in turn.

localfile.select(startline: 1, startcolumn: 1); -- Start of file

findlist = {1, 3, 5, 7, 9}; -- List of values to search for

repeat for linenum in findlist
localfile.find(string: string(linenum));
result = dialog("Found " + string(linenum) + " at " +

string(localfile.selection));
endrepeat

This script searches for the odd numbers contained in the list, one by one, and
displays a message if the string is found.

Exception Handlers
When script execution results in an error, Qedit normally stops executing the script
and displays an error dialog. A script can trap the error, however, and begin
executing special code to handle it. In addition, when a script is attached to an object,
it receives events from the user interface (and from other scripts) and can execute
groups of statements in response.

To "protect" a group of statements from halting script execution in the event of an
error, use a TRY/RECOVER block. Qedit executes statements from the TRY block in
the normal fashion until an error occurs, at which point script execution continues

Qedit Scripting Language User Manual QSL Foundations • 19

with the statements in the RECOVER block. If no error occurs during the TRY, the
statements in the RECOVER block are ignored:

try
file = open(connection: connection, filename: filename);

recover
result = dialog("Sorry, unable to open file " + filename +

" on connection " + connection);
stop;

endtry

In this example, Qedit tries to open the specified host file. If, for any reason, the
open() does not succeed, an error message is displayed using the Dialog()
function and the script execution is interrupted.

Catching specific errors
In the example above, the statements in the RECOVER block are executed for any
kind of error. If you want to check for specific errors, you can specify a variable
name on the RECOVER statement. The variable is then created as a record and
contains information about the error. You can check the contents of that variable in
the RECOVER block and make decisions based on that.

Error Recovery Scope
TRY blocks have dynamic scope rather than lexical scope. If a script is being
executed as the result of a subroutine call from another script, and that call is within
a TRY block, Qedit transfers control to the calling script's RECOVER block in the
event of an error not handled in the called script. Normally, this is exactly what is
required, but it means that if you write a script that is intended to be called as a
subroutine, you should include enough error handling to clean up any loose ends in
the subroutine before passing the error on to Qedit.

Subroutines
Qedit scripts can contain subroutines. They can be declared anywhere within a script.
A subroutine can even be declared after calls to it. However, for clarity and
readability, it is recommended that they all be declared either at the beginning or at
the end.

In the current implementation, however, the only exception to this would be when
there are global variables. These variables have to be declared or initialized before
the subroutines that use them. For example, the following script fails with a run-time
error, "unitialized value encountered", on the writelog() call.

sub testSub()
writelog(GlobalText);

endsub

GlobalText = "Global text";
testSub();

To fix this, the script should be coded this way:

20 • QSL Foundations Qedit Scripting Language User Manual

GlobalText = "Global text";
testSub();

sub testSub()
writelog(GlobalText);

endsub

Subroutines are in effect event handlers for the script, and a subroutine call is an
event. A subroutine can also be called from other scripts. Subroutines become
methods for the script.

Parameters
As in C or Pascal, subroutines can contain local variables and can receive parameters
passed from their caller. The parameter list, if any, is enclosed within parentheses. If
a subroutine does not require any parameters, the parentheses are also optional. The
parameter list only contains names. Parameters do not have data types. They take on
the type of the original variables they represent.

sub QualifyFilename(theName)
groupName = "LIBS";
accountName = "SOURCE";

return theName + "." + groupName + "." + accountName;
endsub

sub ErrorSub
result = dialog("Invalid operation encountered!");

endsub

In this example, theName is a parameter passed by the calling statement to the
QualifyFilename subroutine. On the other hand, the ErrorSub subroutine
does not expect any parameters.

Parameters are passed by value. This means that the content of the original variable
can not be changed. If you need to change the value of a parameter, you should use
the Return statement. If you need to return multiple values, specify a record as the
returned value.

Qedit does not perform type checking on parameters. This means that the caller
could pass a numeric value while the subroutine expects a string. To avoid possible
problems, you can use the Typeof() function to validate the parameter types. This
also allows for parameter overloading. The same subroutine could perform different
operations if the parameter is numeric or a string.

Calling a Subroutine
QSL uses the parentheses to differentiate a subroutine name from a variable. When
calling a subroutine with no required parameters, the parentheses are optional. These
subroutines can be called with an empty parameter list as in:

MySubroutine();

Alternatively, you can use the call statement to explicitly execute a subroutine. In
this case, the parentheses do not have to specified for a subroutine with no
parameters. Keep in mind that using the call statement does not allow the capture
of a return value.

call MySubroutine; -- Valid subroutine call
returnValue = call MySubroutine; -- Invalid. Can not assign return.

Parameters can be passed by position or by name. You can not mix these options on
the same call. That is, if you want to use positional parameters, you cannot have

Qedit Scripting Language User Manual QSL Foundations • 21

named parameters. If you use named parameters, you can not use positional
parameters.

Positional parameter values are matched from left to right with the names in the
subroutine declaration. For example,

sub testsub(theFile, theLine, theColumn);

returnValue = false;

if typeof(theFile) = qedit.typeundefined then
result = dialog("You MUST pass a file object to TESTSUB");
return returnValue;

endif

returnValue = true;

if typeof(theLine) = qedit.typeundefined then
-- theLine parameter is missing. Use default value.
theLine = 1;

endif

if typeof(theColumn) = qedit.typeundefined then
-- theColumn parameter is missing. Use default value.
theColumn = 1;

endif

-- subroutine logic
localFile = open(theFile);
localFile.select(startline: theLine, startcolumn: theColumn);

return returnValue;

endsub

testsub("c:\personal\diary.txt", 10, 20);

This call to testsub passes three parameters: "c:\personal\diary.txt" is assigned to
theFile, the value 10 is assigned to theLine and 20 to theColumn.

If you use positional parameters, you can not omit parameters in the middle of the
parameter list. However, you can omit parameters at the end of the list. Here are
some sample calls:

testsub("c:\personal\diary.txt");
-- Valid. theLine and theColumn parameters are undefined

testsub("c:\personal\diary.txt", 10);
-- Valid. Only theColumn is undefined

testsub("c:\personal\diary.txt", , 20);
-- Invalid. theLine must be specified

If you choose to omit positional parameters, they will be undefined. This will cause a
runtime error on the first statement that references the parameter name. The
subroutine should be coded to handle these situations. As shown in the sample
subroutine above, you can use the Typeof() function to determine the presence of
optional parameters.

If you want get around these restrictions, you can use a named parameter list. You
would qualify each value with the name of the corresponding parameter. This feature
allows you to omit parameter values anywhere in the list. If you omit parameters,
you still have to write code to handle these situations. It also allows you to specify
the parameters in any order. Here are some examples:

22 • QSL Foundations Qedit Scripting Language User Manual

testsub(theFile: "c:\personal\diary.txt");
-- theLine and theColumn parameters are undefined

testsub(theFile: "c:\personal\diary.txt", theLine: 10);
-- Only theColumn is undefined

testsub(theFile: "c:\personal\diary.txt", theColumn: 20);
-- theLine is undefined

testsub(theColumn: 20, theFile: "c:\personal\diary.txt", theLine: 10);
-- All parameters are present but in a different order

If you need to allow a variable number of parameter values, you can also define the
subroutine with a single parameter and pass a record structure. The subroutine
should then be coded to "unpack" the structure.

Return values
Optionally, subroutines can return values to their callers. A call to a subroutine that
returns a value might look like this:

fullFileName = QualifyFilename("IOSUBS");

After control is returned from the QualifyFilename subroutine, the variable
fullFileName will contain "IOSUBS.LIBS.SOURCE".

If the call statement does not expect a return value but the subroutine has a return
statement, the value is simply discarded.

If the call statement expects a return value but the subroutine does not return one, the
receiving variable is of type Undefined and does not contain any value.

Local variables
Any new variable defined within the body of a subroutine are local to that
subroutine, meaning that their values aren't visible outside the SUB/ENDSUB block.
Their initial value is undefined upon entry in the subroutine and their value becomes
undefined when the subroutine returns.

Global Variables
Variables that are declared outside subroutine blocks are global to the script. This
means they are recognized in all internal subroutines. Once declared, global variables
retain When global variables are declared with the Property keyword, their values
are exported to external scripts.

Recursion
Script subroutines can call themselves recursively. This may be useful for processing
lists (or nested lists) in subroutine parameters. Recursive calls, like normal calls, get
a complete new set of local variables. Recursion depth is limited to around 2000,
depending on other characteristics of the script.

Timeouts
Since Qedit clients communicate with servers to get part of their work done, the
client must wait for the result from the server to know whether a particular request
succeeded or failed. And while in normal operation there's a thinking person in
charge of Qedit's actions, a script can't make complicated decisions. So while the
Qedit is operating under control of a script, it sends only one command at a time, and
waits for the response from the server before continuing.

Qedit Scripting Language User Manual QSL Foundations • 23

By default, Qedit will wait 60 seconds for a server to respond before deciding that no
response is forthcoming, and stopping the script with a timeout error (-11). You can
change that for specific statements by using a WITH TIMEOUT block around
statements that you know might take a long time, such as searching a very large file:

with timeout 300
logFile.Find("SNEAKY.PAYROLL")

endwith

If you need to do something special in the event of a timeout, be sure to use a
TRY/ON ERROR block to trap the timeout error.

Stop button on the Script
Control Panel

You can also use WITH TIMEOUT 0 or WITH NO TIMEOUT if you want Qedit to
wait forever. If you become impatient before forever expires, you can stop execution
of the script using the Stop button on the Script control panel.

Stop button on the Script Control Panel

Stopping Execution
The stop statement halts execution of the current script. Control is returned to the
calling script or to Qedit depending on how the script was invoked.

The Script Environment
The collection of scripts loaded at any one time, either via the Manage Scripts
dialog box or from another script using the Loadscript() application method, is
an environment which newly-loaded or transient scripts must interact with. This
means that you can put commonly-used utility routines into scripts by themselves,
and then refer to those utility routines in other scripts you write. If you wish to
execute a complete script, you can use the Invoke() statement.

Methods and Subroutines
When Qedit executes a method call in a script, it searches for the method in a well-
defined order:

1. The script containing the method call.

2. Previously-loaded scripts, starting with the most-recently loaded script.

3. The Qedit application object.

This means that scripts you write can override Qedit application methods, and that
scripts can contain overrides of routines in earlier scripts. You can always refer to a
specific subroutine or method by qualifying the name with the script that you want
Qedit to search. The special qualifier QEDIT tells Qedit to search the application
object as in Qedit.NewFile().

Loading Scripts When Qedit Starts
When Qedit starts up, it automatically loads scripts from predefined locations. First,
it loads all scripts from the AUTOLOAD subdirectory of the SYSTEM directory in the
directory containing the Qedit application. These scripts are supplied by Robelle.
You should not change the scripts in any of the subdirectories under SYSTEM.

24 • QSL Foundations Qedit Scripting Language User Manual

Next, Qedit scans the AUTOLOAD subdirectory of the USER directory in the
directory containing the Qedit application. These scripts are custom to your site.

Finally, Qedit checks your personal script directory.

Running Scripts from the Command Line
You can also ask Qedit to run a script from the MS-DOS command line using
different arguments.

Execute Only Argument
If you use the -r argument, Qedit executes the script specified on the command line
after it has finished loading all of the scripts in the two default script directories, but
before it opens any text files specified in the command. If the command-line script
doesn't call the Qedit EXIT() method, Qedit remains open after the script
terminates.

C:\QWIN32.EXE -r MYSCRIPT.QSL

The "-r" argument and the script name should be the last arguments on the line. If the
script name contains embedded spaces e.g. My Script.qsl, the name should be
enclosed in quotes as in:

C:\QWIN32.EXE -r "My Script.QSL"

Execute and Terminate Argument
If you want to run Qedit from the DOS command line, have it execute the script and
terminate even if the script does not call the EXIT() method, use "-q" along with
the "-r" (execute only) the argument. The "-r" argument and the script name should
be the last arguments on the line.

C:\QWIN32.EXE -q -r MYSCRIPT.QSL

Prevent Autoloading
By default, Qedit loads all the scripts in the Autoload directories even if it is run
from the DOS command line. If that's not desirable, you can use the "-n" argument.
This way, Qedit runs the specified script only as indicated by the other arguments.

C:\QWIN32.EXE -n -r MYSCRIPT.QSL

Using Scripts to Add Commands
When Qedit loads a script, it scans the script for commands to add to the Script
menu. These commands are defined by ON COMMAND statements. If the script
contains more than one command, Qedit adds a submenu to the Script menu and
lists all of the commands in the script.

If the script contains an "outer block", executable statements that are not part of a
subroutine or a handler, Qedit also adds the script name to the Script menu as a
command. Choosing this command runs the outer block of the script.

Command names can be the script's name or names associated with On command
statements. A submenu name can be the script's name or the name defined in the
Group parameter of the Name statement.

Qedit Scripting Language User Manual Installing Scripts • 25

Installing Scripts

Script Libraries
It's fine to write scripts for yourself but it's even nicer to share scripts with others and
make them more productive too. In some cases, you might want specialized scripts
and their methods to be readily available to other scripts. Qedit is designed to
facilitate these type of operations.

Robelle Public Library
Robelle has written a number of scripts already. Most of these scripts are distributed
with Qedit for Windows and are stored the System directory. However, the script
library is continuously enhanced with new ones and existing ones are improved. If
you have access to the World Wide Web (WWW), you can download the latest
versions directly from our web site. To get a script on your PC, you can copy the
script using the clipboard:

1. point your browser to http://www.robelle.com/support/qwin/scripts.

2. browse through the list of available scripts

3. when you have found the one you want, click on the script name to display it

4. hit CTRL+A to select all the text

5. hit CTRL+C to copy the text to the clipboard

6. switch to Qedit for Windows and create a new local file

7. hit CTRL+V to paste the clipboard

8. save the file in the appropriate directory. The script should contain
recommendation about it.

If you prefer, you can download the file directly instead of using the clipboard.

1. point your browser to http://www.robelle.com/support/qwin/scripts.

2. browse through the list of available scripts

3. when you have found the one you want, right-click on the script name

4. select the Save Target as command from the shortcut menu

5. save the file in the appropriate directory. The script should contain
recommendation about it.

http://www.robelle.com/support/qwin/scripts
http://www.robelle.com/support/qwin/scripts

26 • Installing Scripts Qedit Scripting Language User Manual

Contributed Library
We encourage users and customers to write their own scripts. We are also
encouraging people to make their scripts available to other users in the community.
These scripts can be of general interest or they can be useful to other people using
the same software package. It doesn't really matter. Robelle is ready to setup a
contributed script library area on the Web site as a distribution mechanism.

Where Are They?
The Qedit installation procedure creates a number of directories specifically to store
scripts. These directories are located under the directory where the Qedit application
program file resides. Typically, this would be \robelle\bin.

Scripts From Robelle
It is our intention to write scripts to provide additional functionality to Qedit or
solutions to common editing tasks. For this purpose, the Qedit installation procedure
creates the System directory, e.g. \robelle\bin\system. This directory is
owned by Robelle and you should not change anything in it. We are likely to change
the scripts we provide. When you install a new version of Qedit, the content of the
System directory is going to be refreshed. If you have made changes to it, they will
probably be lost.

A description of these scripts is provided in "Robelle Script Library" on page 82.

Company-wide Scripts
We expect customers to write their own scripts or to customize scripts that we have
distributed. In order for you to distribute your versions, the installation procedure
creates a directory called User under the install directory e.g. \robelle\bin.
This is your area. You can make all the changes you want.

Personal Scripts
Qedit allows you to have personal scripts. These scripts do not have to reside in a
specific location. You can specify the location in the User script directory box on
the Preferences dialog box.

Qedit Scripting Language User Manual Installing Scripts • 27

User script directory option in the Preferences dialog box

You can store your personal scripts anywhere you like. In the example above, the
scripts are in the \robelle\qedit\Private directory on the D: drive. To
point to a different directory, click on the Change... button. From the Browse for
Folder dialog box, select the location where the scripts are residing.

28 • Installing Scripts Qedit Scripting Language User Manual

Browse for Folder dialog box

Specialized Subdirectories
Each of these directories, System, User and the personal directory, has
subdirectories for specific purposes. Qedit assumes that all the files in these
subdirectories are scripts, no matter what they are called or which attributes they
might have.

Autoload Subdirectory
This subdirectory contains scripts that are automatically loaded when Qedit starts.
Loading does not mean execute. Qedit scans all the scripts in the sorted order. It
compiles each script and reports compile errors, if any. Then, it searches for
subroutines and On command statements. Statements in these blocks are compiled
and stored in memory, ready to be used.

Subroutines become methods and, as such, can be called from any other scripts.
Script names, if applicable, and On command statements are added to the Script
menu. Users can then execute them from the menu.

Qedit scans the Autoload subdirectory in each script library directory.

Scripts Subdirectory
This subdirectory is used to store all other scripts. These scripts are typically run or
loaded manually as needed.

Although Qedit does not look for this subdirectory in particular, by convention, each
script library directory should have one called Scripts.

Qedit Scripting Language User Manual Installing Scripts • 29

Managing Loaded Scripts
Qedit automatically loads all the scripts stored in the Autoload directories.
However, there are times where you will want to manually load other scripts or even
remove scripts that were auto-loaded. You can manage the list of loaded scripts with
the Manage scripts dialog box. This dialog box is available from the Manage
scripts command of the Script menu.

Expand or
collapse list

Methods

Script menu
commands

Manage scripts dialog box

Collapsed list

Expanded list

Qedit displays all the loaded scripts in the list window. The list is arranged as an
hierarchical structure. The top levels are the script names. If a script contains
methods (subroutines) or commands (On command statements), the name is
preceded by a plus or minus sign. A plus sign (collapsed structure) indicates that the
lower levels are not visible. To expand the structure and make the lower-level entries
visible, click on the plus sign. The sign changes to a minus (expanded structure).

Collapsed list

Expanded list

With an expanded structure, you can see all the callable methods (subroutines).
Script menu commands appear in parentheses with the Command: prefix. The
ampersand, if any, indicates the mnemonic. A mnemonic is an alternative way of
invoking the command. In the example above, you can sort the lines in ascending
order by entering ALT+A.

If you wish to unload a script, simply select its name by clicking on it and select
Remove. If you want to load a new script, select Add and find the script file. Note
that you can only load local scripts with the Manage Scripts dialog box. Once
added, methods and commands in the script become available.

30 • Installing Scripts Qedit Scripting Language User Manual

Macros and Common Functions
Macro commands are found in a lot of software today. QSL also allows you to create
your own set of commands for things that are not implemented in Qedit or that
require a number of steps. The sample script "Insert a Signature or a Timestamp" on
page 71 is a good example. It contains 2 On command statements, each on
corresponding to a macro. To make these macros available on the Script menu, you
need to load the script. You can manually load the script using the Manage scripts
dialog box, the first time you need one of the functions. You can automatically load
the script simply by saving it in one of the Autoload directories. Or you can have a
special script that will load other scripts for you.

Another use for loaded scripts is to create a library of general-purpose functions.
These functions would be available to all other scripts.

For example, here is how we combine all these things to manage the Qedit test suite.

First, we create an autoload script to add a command on the Script menu. Let's call
it QWTLoadGlobals.qsl and it is going to reside in the User/Autoload
directory. The script only contains a few lines:

name QWTLoadGlobals;

loadscript(filename: "robelle/qedit/user/scripts/globals.qsl");

Because it's in the Autoload directory, the QWTLoadGlobals command
automatically appears on the Script menu. It is important to remember that the
script is not executed at this point.

This script simply loads another script called globals.qsl. This script contains a
number of generic methods to manage a result file. Each method is defined as a
subroutine. We also assign a name to the script: QWTGlobals.

Qedit Scripting Language User Manual Installing Scripts • 31

name QWTGlobals;

property resultFile;
property fileResultFilename = "c:\robelle\qedit\testing\results.txt";

sub StartTest(testSet, file)
resultFile = open(fileResultFilename);
theMessage = "Start " + testSet + " on file ";
theMessage = theMessage + file.title;
theMessage = theMessage + " at ";
theDate = datetime();
theMessage = theMessage + theDate.FmtShortDateTime();
aLine = {};
aLine = aLine + theMessage;
aLine = aLine + "";
theSpot = {line: 0, column: 1};
theSpot.line = resultFile.linecount;
resultFile.Insert(at: theSpot, text: aLine);

endsub

sub StopTest(testSet, result)
theMessage = "Stop " + testSet;
if result then

theMessage = theMessage + " Okay";
else

theMessage = theMessage + " Failure";
endif

aLine = {};
aLine = aLine + theMessage;
aLine = aLine + "";
theSpot = {line: 0, column: 1};
theSpot.line = resultFile.linecount;
resultFile.Insert(at: theSpot, text: aLine);

endsub

sub WriteTestResult(theMessage)
resultFile.Insert(theMessage);

endsub

sub CloseResult()
resultFile.Close();

endsub

These methods are not available immediately when Qedit starts. You have to execute
the QWTLoadGlobals command first. If you have not done so, scripts that try to
call one of the methods simply aborts with an error. Once the command is executed,
the methods become available. Note that these do not appear as additional commands
on the Script menu. If you want to display their names, you have to use the
Manage scripts dialog box.

32 • Installing Scripts Qedit Scripting Language User Manual

Loaded scripts after executing QWTLoadGlobals

A sample script could then use the methods as follows:

mpefile = open(connection: "MPE", filename: "file01.test");
QWTGlobals.starttest("TEST01", mpefile);
QWTGlobals.writetestresult("Step 1: file opened successfully");
QWTGlobals.stoptest("TEST01", True); -- Success
mpefile.close();

The results.txt file would then contain:

Start TEST01 on file MPE: FILE01.TEST.ACCT at 10/29/1999
11:31:07 AM
Step 1: file opened successfully
Stop TEST01 Okay

Qedit Scripting Language User Manual Some Basic Scripting Operations • 33

Some Basic Scripting Operations

Where To Start
We have seen how Qedit works with objects. Each object has attributes (properties)
and functions (methods). In this section, you will find how these all hang together
and what is the logical sequence of dealing with objects.

The QEDIT Application Object
The QEDIT application object is always there. It is the foundation for all other
operations because the application methods allow you to create and manage other
objects such as documents.

File Operations
Document objects have a one-to-one relationship with an instance of a file. We are
talking about instances because one physical file can be accessed multiple times. The
first thing you have to do is to create a document object. This can be done with the
Newfile() or Open() application methods.

Creating a File
Let's start by creating a new local file.

newlocal = newfile();

This statement creates a new document object called newlocal. There are no
parameters because the default is to create a local file. You do not have to provide a
filename at this point. If you want to create a host file, you have to specify the
connection name where the file should go. The connection name must already exist.

newhost = newfile(connection: "Production UX");

Newhost is also a document object. Both newlocal and newhost take on
default properties for the particular platform as defined on the corresponding page in
the Preferences dialog.

34 • Some Basic Scripting Operations Qedit Scripting Language User Manual

Opening a File
If you want to work on an existing file, you have to open it first. Similar to creating a
file, you have to create a document object.

oldlocal = open("C:\personal\diary.txt");
oldhost = open(connection: "Production UX", filename: "cobolsrc");

In this example, oldlocal and oldhost are document objects linked to existing
files. Note that you do not have to specify the Filename parameter keyword when
opening a local file.

Each document object, no matter how it was created, comes with document methods.
These methods are functions to alter the object. When you call a method, you have to
qualify it with the object name so Qedit knows which file you want to work on.

Printing a File
QSL allows you to send the content of a file to the local printer attached to your PC
or on the network. For host files, you can also send the output to a system printer on
the host. Both document methods, PrintOnLocal() and PrintOnHost(), assume
that you want to print the whole file unless you have specified StartLine or
Endline.

The PrintOnLocal method sends the output to the default printer configured on
your PC. It uses all the default settings. You do not have any way of changing these
settings.

The PrintOnHost method provides all the controls that you have from the Print on
host dialog box.

In this example, the script prints the last 20 lines of the local file and prints the first
20 lines of the host file using the Shift option.

localfile = open("c:\personal\diary.txt");
last20 = localfile.linecount - 19;
localfile.printonlocal(startline: last20);
localfile.close();

mpefile = open(connection: "Development MPE", filename="prog1.src");
mpefile.printonhost(endline: 20, shift: true);
mprefile.close();

Saving a File
If you want to save the changes made to a file, you can use one of two methods:
Save() or SaveAs(). Save() is used to save changes to an existing file,
overwriting the original. SaveAs() must be used to record changes for a new file.
It can also be used for an existing file if you want to save the changes under a
different name.

newlocal.saveas("C:\personal\newdiary.txt");
oldhost.save();

Closing a File
If you want to close either types of files, you should call the close() method. For
example, to close a host file you would use:

Qedit Scripting Language User Manual Some Basic Scripting Operations • 35

newhost.close();

There are no parameters in this call because we want to use default settings.

Editing Files
Once you have a file opened, you likely want to modify its contents. Again, this is
done using document methods.

Adding Text
Let's put some text in a new local file. You use the Insert() method to add text
to a file.

newlocal = newfile();
newlocal.insert(at: {line: 1, column: 1},

text: "This is the first line.");
newlocal.saveas("C:\personal\newdiary.txt");
newlocal.close();

In this example, the location defined with the at keyword is not important since the
file is empty. If you want to insert text in the middle of a line, simply provide a
different column number. If you want to insert a new line, simple use a different line
number. If you want to insert a line at beginning of the file, use the coordinates from
the sample script.

Calling the Insert() method multiple times is not an efficient way to load a file.
If you need to create many lines, you can create a record where each element
represents a line. For example, to create a file with 3 lines of text each separated by
an empty line, you could use the following:

newlocal = newfile();
textlines = {}; -- Create an empty record
textlines = textlines + "This is the first line"; -- Append text
textlines = textlines + ""; -- Append an empty line
textlines = textlines + "This is the second line";
textlines = textlines + "";
textlines = textlines + "This is the third line";
newlocal.insert(at: {line: 1, column: 1}, text: textlines);
newlocal.close();

Deleting Text
To remove unwanted text, all you have to do is call the Delete() method with the
coordinates. If you know exactly what you want to remove, you can hard-code the
start and end coordinates.
textlines = {}; -- Create an empty record
textlines = textlines + "This is the first line"; -- Append text
textlines = textlines + ""; -- Append an empty line
textlines = textlines + "This is the second line";
textlines = textlines + "";
textlines = textlines + "This is the third line";
newlocal.insert(at: {line: 1, column: 1}, text: textlines);

newlocal.delete(startline: 2); -- Delete line #2
newlocal.delete(startline: 4, startcolumn: 5, endcolumn: 7);

-- Delete text in column 5 through 7 of line #4

If you don't know the coordinates ahead of time, you can use the information from
the selection document property. This property contains the cursor's current

36 • Some Basic Scripting Operations Qedit Scripting Language User Manual

position whether it's a simple caret location or an actual selection. The selection
might be the result of a previous call to the select() or find() methods.
textlines = {}; -- Create an empty record
textlines = textlines + "This is the first line"; -- Append text
textlines = textlines + ""; -- Append an empty line
textlines = textlines + "This is the second line";
textlines = textlines + "";
textlines = textlines + "This is the third line";
newlocal.insert(at: {line: 1, column: 1}, text: textlines);

newlocal.delete(startline: 2); -- Delete line 2
newlocal.delete(startline: 4, startcolumn:5, endcolumn: 7);

-- Delete text in column 5 through 7 of line 4

if newlocal.find(string: "third", entirefile: true) then
newlocal.delete(range: newlocal.selection);

endif

In this example, the script searches for the string "third" from the beginning of the
file. If it finds it, it deletes it.

Replacing Strings
The string replace operation is implemented in the Find() method. All you need to
do is specify the ReplaceWith parameter. If you specify this parameter, all the
strings found within the range are changed.

By default, the operation starts at the current cursor location and goes to the end of
the file. You can perform a change on a selection only. To define the selection, you
can use the Select() document method before calling Find() or specify the
coordinates right in the Find() call.

oldlocal = open("C:\personal\diary.txt");
oldlocal.select(startline: 1, startcolumn: 1);

-- Places cursor at the beginning of the file
replaceresult = oldlocal.find(string: "J. Doe",

replacewith: "John Doe");

oldlocal.select(startline: 1, endline: 5); -- Only lines 1 to 5
replaceresult = oldlocal.find(string: "Joe Doe",

replacewith: "Joe Doe",
selectiononly: true);

if replaceresult then
result = dialog(string(replaceresult) + " occurrences replaced");

else
result = dialog("NOT FOUND!");

endif
oldlocal.close();

Copying, Cutting and Pasting Text
You can Copy(), Cut() and Paste() text inside the same document or from one
document to another just like you would using the mouse and keyboard. All you
have to do is

1. select the text that you want to copy or cut.

2. call cut() or copy()

3. move the cursor to the destination location

4. paste the clipboard with the paste() method

Qedit Scripting Language User Manual Some Basic Scripting Operations • 37

oldlocal = open("C:\personal\diary.txt");
oldlocal.select(startline: 1, endline: 5);

-- Selects the first 5 lines
oldlocal.copy(); -- Send the selection to the clipboard
oldlocal.select(startline: oldlocal.linecount, startcolumn: 1);
oldlocal.paste(); -- Paste the clipboard
oldlocal.close();

To paste into another file, just use the object name of the other file when calling the
Paste() method.

oldlocal = open("C:\personal\diary.txt");
oldlocal.select(startline: 1, endline: 5);

-- Selects the first 5 lines
oldlocal.copy(); -- Send the selection to the clipboard

newlocal = newfile();
newlocal.select(startline: 1, startcolumn: 1);
newlocal.paste(); -- Paste the clipboard
oldlocal.close();
newlocal.close();

Selecting and Retrieving Text
In many cases, you have to be able to move the cursor or select existing text. There
are a few document methods available for this purpose.

Retrieving Text in Known Location
If all you want to do is retrieve some text, you can use the GetText() method. As
long as you know the text coordinates, you can extract that portion of the file and
copy it to a variable.

To select one whole line, simply specify the start line. If you want to select multiple
complete lines, specify a start and end line.

oldlocal open("C:\personal\diary.txt");
firstline = oldlocal.gettext(startline: 1);

-- Puts only the first line in firstline
lines1to5 = oldlocal.gettext(startline: 1, endline: 5);

-- Puts lines 1 to 5 in lines1to5
oldlocal.close().

To select one or characters on a single line, specify a start line and a start and end
column. To select text on different lines, add an end line.

oldlocal open("C:\personal\diary.txt");
column3to12: oldlocal.gettext(startline: 1,

startcolumn: 3, endcolumn: 12);
-- Copies text from columns 3 to 12 on line 1 into column3to12

multilines = oldlocal.select(startline: 1, startcolumn: 3,
endline: 5, endcolumn: 12);

-- Copies text from column 3 to the end of line 1 up to
-- column 12 on line 5 into multilines

oldlocal.close().

If you want to perform a columnar operation, you need to specify the Rectangular
keyword.

38 • Some Basic Scripting Operations Qedit Scripting Language User Manual

oldlocal open("C:\personal\diary.txt");
rectangle = oldlocal.gettext(startline: 1, startcolumn: 3,

endline: 5, endcolumn: 12,
rectangular: true);

-- Copies text between columns 3 and 12 on lines 1 through 5
-- into rectangle

oldlocal.close().

The target variable can be a simple variable or a record. The only time it's single is
when you are retrieving characters from a single line. If the retrieved text spans
multiple lines, the target variable is a record. A selected line is stored as 2 elements:

• the text on the line

• an empty element to indicate the start of a new line

For example, if the file contains:
First line.

Second line.

Retrieving these 2 lines would create a record with the following elements:
{ "First line", "Second line.", "" }

Moving the Cursor
If you know where you want to move the cursor, you can use the Select()
method. By itself, the Select() method does not do anything with the text. It
simply moves the cursor to the specified location and, if applicable, highlights the
selected text.

The Select() method is typically used to prepare another operation. Here are
examples showing how you would use this method to:

• start a search operation at a precise location instead of searching through the
entire file

• do a replace operation in a selection only

• retrieve part of a file

If you want to move the caret to a different location but not select any text, you
should specify a start line and start column only.

oldlocal = open("C:\personal\diary.txt");

oldlocal.select(startline: 1, startcolumn: 10);
-- Places the insertion point in column 10 of the first line

if oldlocal.find(string: "John Doe") then
result = dialog("Found at " + string(oldlocal.selection));

else
result = dialog("NOT FOUND!");

endif
oldlocal.close();

If you want to put the caret at the beginning of the file, set StartLine and
StartColumn to 1. If you want to put the caret at the end of a line, use the
RecordLength document property as the starting column as in:

file.select(startline: 2, startcolumn: file.recordlength);

Of course, the record length is likely going to be greater than the actual line length.
In this situation, Qedit puts the caret after the last significant character on the line.

Qedit Scripting Language User Manual Some Basic Scripting Operations • 39

If you want to put the caret at the end of the file, you can use the LineCount
document property as the starting line and the RecordLength property as the
starting column as in:

file.select(startline: file.linecount, startcolumn: file.recordlength);

If you want to select some text, you have to use different start and end combinations.
When the Select() method is executed, the corresponding text appears
highlighted in the document window.

To select one whole line, simply specify the start line. If you want to select multiple
complete lines, specify a start and end line.

oldlocal open("C:\personal\diary.txt");
oldlocal.select(startline: 1); -- Selects only the first line
oldlocal.select(startline: 1, endline: 5); -- Selects lines 1 to 5

replaceresult = oldlocal.find(string: "John Doe",
replacewith: "Jane Dover",
selectiononly: true);

if replaceresult then
result = dialog(string(replaceresult) + " occurrences replaced");

else
result = dialog("NOT FOUND!");

endif
oldlocal.close().

To select one or characters on a single line, specify a start line and a start and end
column. To select text on different lines, add an end line.

oldlocal = open("C:\personal\diary.txt");
oldlocal.select(startline: 1, startcolumn: 3, endcolumn: 12);

-- Selects text in columns 3 to 12 on line 1

columns3to12 = oldlocal.getselectedtext();
-- Copies the selection into columns3to12

oldlocal.select(startline: 1, startcolumn: 3,
endline: 5, endcolumn: 12);

-- Selects text from column 3 to the end of line 1 up to
-- column 12 on line 5

oldlocal.close().

If you wish to select all the lines in a file, you can use the Select() method where
StartLine is 1 and EndLine is the LineCount property. A simpler way is to use
the SelectAll() method.

oldlocal.select(startline: 1, endline: oldlocal.linecount);

oldlocal.selectall(); -- Same result as previous Select call

If you want to perform a columnar operation, you need to specify the Rectangular
keyword.

oldlocal = open("C:\personal\diary.txt");
oldlocal.select(startline: 1, startcolumn: 3,

endline: 5, endcolumn: 12,
rectangular: true);

-- Selects text between columns 3 and 12
-- on lines 1 through 5

oldlocal.close().

If you wish to return to the current position, you should save the Selection property
into a variable. You can continue to process the file. When you are ready to go back,
you have to use the Select() method specifying the variable as the value for the
Range keyword.

40 • Some Basic Scripting Operations Qedit Scripting Language User Manual

saveCurrent = file.selection;
-- Perform other edit operations
file.select(range: saveCurrent); -- Go back to the saved position

Finding Text
The Select() and GetText() methods are fine if you know where the text you
need is located. If you don't know where it is, you can use the Find() method. You
might still have to use Select() to control the range of the search.

In its simplest form, a call to Find() requires a search string. It can be a string of
characters, a pattern or a regular expression. The default is to start the search from
the current cursor location. If the string is found, the method returns True. It also
updates the following document properties:

• LastFoundLength

• LastFoundLine

• LastFoundColumn
You can also access the Selection document property to determine the coordinates.

oldlocal = open("C:\personal\diary.txt");
oldlocal.select(startline: 1, startcolumn: 1);

-- Make sure the cursor is the beginning of the file

-- Search for an exact string
findresult = oldlocal.find(string: "John Doe");
if findresult then

result = dialog("String found at " + string(oldlocal.selection));
else

result = dialog("String NOT FOUND");
endif

-- Search for a pattern e.g. John Doe, J. Doe, Jane Doe
findresult = oldlocal.find(pattern: "@J@Doe@");
if findresult then

result = dialog("Pattern found at " + string(oldlocal.selection));
else

result = dialog("Pattern NOT FOUND");
endif

-- Search for a pattern e.g. John Doe, J. Doe, Jane Doe
findresult = oldlocal.find(regexp: "J[a-zA-Z .]*Doe");
if findresult then

result = dialog("Regexp found at " + string(oldlocal.selection));
else

result = dialog("Regexp NOT FOUND");
endif

Retrieving Selected Text
If you know there is an active selection, either explicitly set with Select() or after
a successful search operation, you can retrieve the selected text using the
GetSelectedText() method. It's a very simple method call because there are no
parameters. All it does is copy the selection into a variable.

Qedit Scripting Language User Manual Some Basic Scripting Operations • 41

oldlocal = open("C:\personal\diary.txt");
-- Search for a pattern e.g. John Doe, J. Doe, Jane Doe
findresult = oldlocal.find(regexp: "J[a-zA-Z .]*Doe");
if findresult then

stringfound = oldlocal.getselectedtext();
else

result = dialog("Regexp NOT FOUND");
endif
if stringfound = "John Doe" then

result = dialog("Found the full name");
else

result = dialog("Found someone named J Doe:" + stringfound);
endif
oldlocal.close();

The target variable can be a simple variable if the selected text is on a single line.
The result of a Find() can never span multiple lines so GetSelectedText()
would create a simple variable. However, if GetSelectedText() is used after a
call to Select(), it could retrieve text on multiple lines. In that case, a record
would be created. A selected line is stored as 2 elements:

• the text on the line

• an empty element to indicate the start of a new line

For example, if the file contains:

First line.

Second line.

Retrieving these 2 lines would create a record with the following elements:

{ "First line", "", "Second line", "" }

Text Within Text
Qedit provides various methods to retrieve text from a document into variables
where it's going to be further processed. There are other features such as the POS()
built-in function and subscripts allowing you to work with text retrieved previously.
The following code segment first retrieves some text from a document and then
checks to see if the text contains the word gadget.

foundText = file.getselected();
wordPosition = pos(foundText, "gadget"); -- return starting position

This code would work fine as long as gadget is always spelled that way. This
would not work if the word contained uppercase letters. To work around this
possibility, you can use the Downshift()() or Upshift()() built-in functions
to force casing in one direction i.e. all lowercase or all uppercase. The revised
segment could look like this:

foundText = file.getselectedtext();
wordPosition = pos(downshift(foundText), "gadget");

The retrieved text would first be changed to lowercase characters before being
compared.

Navigating Through Directories
When working with files in a directory tree structure, it is important to know where
you are and how to move around in the structure. That's true for local files as well as
host files. QSL provides the information and facility in different ways.

42 • Some Basic Scripting Operations Qedit Scripting Language User Manual

Local Directories
If you wish to see what is the local current working directory, simply query the
LocalCWD application property. The information is returned as string and contains
the fully-qualified pathname, including the drive letter.

If you wish to move to a different directory, assign the destination to LocalCWD.
Qedit takes care of switching to the specified directory. The pathname can contain a
drive letter. It can also be an absolute pathname e.g. c:\robelle or relative to the
current location e.g. bin\user\scripts.

currentCWD = qedit.localcwd; -- e.g. returns c:\robelle\bin

qedit.localcwd = "d:\personal"; -- changes CWD
localfile = open("diary.txt"); -- opens a file in new CWD

-- perform edits on the file
localfile.save(); -- save changes

qedit.localcwd = currentCWD; -- returns to original CWD

If the pathname entered as the destination directory is incorrect e.g. does not exist,
Qedit returns an error at run time:

Line n: a property request failed.

This only thing you can do at this point is fix the pathname and re-run the script.

Host Directories
When it comes to communication with host computers, Qedit takes care of
everything. It establishes the connection when the first file is opened. There are times
when you do not know which file to open at first. You might want to select files
from a directory listing instead. In these situations, you can use the
Openconnection() application method to create a new connection object. Qedit
does all the work to connect you to the host without actually opening a file.

If you wish to see the host current working directory, you can query the HostCWD
connection property.

currentHostCWD = mpeconn.hostcwd;

Once a connection is opened, you can enable the ShowBrowser connection
property to display the Directory dialog box.

You can use the ChangeCWD() connection method to navigate through the
directory tree on that host. That same method also allows you to get a subset of files
in a directory.

The following script opens a connection to a UNIX host, changes the current
working directory and displays all the files starting with the letter "s".

uxconn = openconnection(connection: "Development UX");
uxconn.changecwd(pathname: "/usr/include/sys", -- Change the CWD

wildcard: "s*"); -- Select file subset
uxconn.showbrowser = true; -- Display the Directory dialog box

If you have a file already opened, you can get the connection information from the
Connection document property. This way, you can create a connection object and
work with the connection methods and properties.

Qedit Scripting Language User Manual Some Basic Scripting Operations • 43

uxfile = open(connection: "Development UX", filename: "program1.c");
uxconn = uxfile.connection;
uxconn.changecwd(pathname: "/usr/include/sys");
uxconn.showbrowser = true;

If the pathname entered as the destination directory is incorrect e.g. does not exist,
Qedit returns an error at run time. The error message itself is going to be different
depending on the host it's coming from. On a UNIX host, for example, the error
could be:

Unable to get the directory listing. No such file or
directory

On an MPE host, the error could be:
Unable to get the directory listing. A component of the
pathname "" does not exist. (CIERR 9039).

If you want to protect the script from such errors, you can use a TRY/RECOVER
block as in:

try
uxconn.changecwd(pathname: "/home/unknown/directory");

recover
result = dialog("Could not change CWD");
return false;

endtry

Using the Directory Iterators
Scripts can be written to access specific files at specific locations on specific
machines simply by hard-coding everything. Scripts can also be more flexible by
accepting file-related information in parameters or global variables. Typically, these
methods are appropriate for a small number of files or a pre-determined set of files.
If you wish to write a script to process all the files stored in a group or directory, you
should use directory iterator objects.

These objects are created with the GetDirectoryIterator() methods. The
application method is used to process local directories. The connection method is
used to process host directories. The method name is the same in both cases. The
only thing that differentiates them is the prefix. The application method does not
have a prefix whereas the connection method is prefixed with the name of a
connection object previously created.

Directory Iterators Are Dynamic Objects
Iterator objects are really a list of records. Each record containing information about
a file or subdirectory. For a description of these records, see "Local Directory
Iterator" on page 160 or "Host Directory Iterator" on page 161 . To access entries in
a directory iterator, you have to use a REPEAT statement.

Iterator are dynamic objects. They are really a snapshot of the directory structure and
files at a particular point in time. As soon as you start processing an iterator, the
information in it is removed and no longer available. So, after you process all the
entries of an iterator using a REPEAT block, the iterator object will be empty. If you
want to preserve the information, you can save it in a temporary record as the
REPEAT loop executes. Keep in mind that this information might not be up-to-date
anymore.

44 • Some Basic Scripting Operations Qedit Scripting Language User Manual

saveDirList = {}; -- Create a temporary variable
index=1;

localdir = getdirectoryiterator("c:\personal"); -- Get information
repeat for direntry in localdir -- Save iterator information

saveDirList[index] = direntry; -- As nested records
index = index + 1;

endrepeat

-- At this point, localdir is empty.
repeat for direntry in saveDirList

writelog("--" + direntry.name);
endrepeat

See "Using Nested Records" on page 10 on how to create and access nested records.

Local Directory Iterator
Let's say you want to get a list of all the subdirectories in the "c:\personal" local
directory. You could use the following script:

localdir = getdirectoryiterator("c:\personal");
-- localdir is the name of the directory iterator

repeat for direntry in localdir
if direntry.canonicaltype = "directory" then

writelog(direntry.name);
endif

endrepeat

The log window might contain something like:

.

..
Expenses
Agenda
Pictures

If you do not specify a directory name in the call to
GetDirectoryIterator(), Qedit uses the current working directory. The
parent directory ".." and the current directory "." are always there. Note also that
subdirectory names do not contain any special characters or separators. The
canonicaltype element is the only way to identify them.

Host Directory Iterator
To get a list of subdirectories on a host connection, you need a connection object. If
one does not exist, you can use the OpenConnection() application method to
create it. If the connection is already opened, you can create the connection object
using the Connection document property.

Host directory iterators are created with the GetDirectoryIterator()
connection method. Thus, you have to qualify the call with the connection object
name. The directory name passed in as parameter for an MPE connection must use
the POSIX notation on MPE as in:

/DEVACCT/SRC

For example, you could get the list of subdirectories from a UNIX connection using
the following script:

Qedit Scripting Language User Manual Some Basic Scripting Operations • 45

uxconn = openconnection("Production UX");-- Create connection object

uxdir = uxconn("/home/clerk");
-- Create directory iterator based on specified directory

repeat for direntry in uxdir
if direntry.canonicaltype = "directory" then

writelog(direntry.name);
endif

endrepeat

The log window might show something like:

.elm/

.vue/
Mail/
data/
programs/
personal/

Like local directory iterators, if you do not specify a directory name on the call to
GetDirectoryIterator(), the current working directory is used. Note that the
parent directory ".." and current directory "." do not appear in the list. Subdirectory
names end with a slash character "/".

Moving To Different Levels
Directory iterators contain information on files and subdirectories located at the
specified level only. To get at the information on different levels, you have to code
the script accordingly. See "Displaying Information From Directory Iterators" on
page 80 for a sample script.

Executing Host Commands
At times, it is necessary to go back to the host to execute other types of commands.
Qedit can handle all the file editing functions but these files are created for a
purpose. These can be program source files that need to be compiled into executable
files. These executable files need to be run and tested.

QSL provides a set of application methods allowing you to execute host commands
directly from inside Qedit for Windows.

Host Commands Environment
Important: This feature is not meant to be a replacement terminal emulator. It's not
interactive. It's more like a batch-oriented type of environment. This means that it
can not handle user input in the middle of the execution. All the commands must be
self-contained i.e. once started they can complete without further interaction from the
user.

Qedit connections start a new network session on MPE hosts. However, these
sessions do not acquire the same environment as terminal sessions. MPE does not
execute logon UDCs for network sessions. If you use logon UDCs to set global
settings like HPPATH, these will not be set when execute host commands from
Qedit for Windows. This can cause execution errors as unqualified program names
or command files might not be found.

There are a couple of ways you can work around this limitation. You can write
scripts such that there are no ambiguity, making sure the environmnent is set up
properly. If you have many scripts with host commands, this can get complicated to

46 • Some Basic Scripting Operations Qedit Scripting Language User Manual

maintain, The Qedit server can automatically execute commands found in
configuration files on the host. Please refer to "Customizing the server" in the Qedit
for Windows User Manual for more details.

If you set the host environment the way you want, it's going to remain that way until
you change it or until you close the connection. For example, if you change the
HPPATH variable, it is going to retain this new value for subsequent host command
execution.

Starting Execution
In order to execute host commands, you first have to establish a connection. You can
use a connection that is already opened or, if there aren't any, you can initiate one
explicitly with the OpenConnection() application method.

If you have a single command to execute, you can include it as a parameter directly
in the call to HostCommand() application method.

mpeConn = openconnection(connection: "Prod MPE");
hostCmdResult = hostcommand(connection: mpeConn,

command: "listf ,2");

If you wish to execute more than one command, you can put them all in a record
variable, each command being an element.

mpeConn = openconnection(connection: "Prod MPE");
cmdList = {"Showme", "Listf ,2", "Showvar"};
hostCmdResult = hostcommand(connection: mpeConn,

command: cmdList);

Checking Results
The HostCommand() application method returns information on the execution
outcome in a record variable. The number of elements in the record is variable.
There is always an element called ExitCode. It indicates whether the host was able
to start the execution. It does not indicate the success or failure of the actual
commands. A value of zero indicates the command was started successfully. Any
non-zero value indicates that the host has been unable to start command execution.

Typically, host commands return information on the outcome. MPE hosts use Job
Control Word (JCW). By convention, there is a JCW called JCW. This particular
variable is typically reflects the overall execution status. The value can be set
automatically by executing programs or manually using the Setjcw command. On
UNIX, most programs, commands and scripts use the return statement to indicate
success or failure. From a UNIX shell, the return value is stored in the $? shell
variable. Upon host command completion, the server returns the value of the JCW
variable or the $? variable as the JCW element of the return record.

On a UNIX host, the JCW element can have different meanings. If the value is
positive, it represents the return code. If the value is negative, it represents a signal.
This means the host command has been interrupted by someone else or encountered
a serious error. For example, if the host command has been interrupted with

kill <processID>

the value of JCW would be -15. If, for some reason, the server can not find the
return code or a valid signal, the JCW element will contain -1000.

Qedit Scripting Language User Manual Some Basic Scripting Operations • 47

The QhostResult feature is
only available on MPE hosts.

Optionally, the MPE server provides a simple way to communicate information from
your host commands. Upon host command completion, the server checks the
existence of a user-defined variable called QHostResult. If it exists, the server
transmits its value back to the client. The variable then becomes an element in the
return record. The variable can be a numeric value or a string. Numeric values can
range between -2147483648 and 2147483647. Boolean values are transmitted as
numeric values where 0 is False and 1 is True. A string value can contain up to
255 characters. You decide which type serves you best.

Another element in the result record is called CommandOutput. It's another record
containing the actual output generated by the host commands. Each element of this
record represents one line of output. Here is an example on how to display the result
of a host command in the log window of the Script Control dialog box.

mpeConn = openconnection(connection: "Prod MPE");
hostCmdResult = hostcommand(connection: mpeConn,

command: "showme");
if hostCmdResult.ExitCode = 0

repeat for outputline in hostCmdResult.CommandOutput
writelog(outputline);

endrepeat
endif

The log window would contain something like:

MPE/iX CI C.16.01 Copyright (C) Hewlett-Packard 1987. All Rights
Reserved.
_&dJ**************** Production MPE **************************
_&dJ*** This is a private system operated for ACME Widget ***
_&dJ*** company business. ***
_&dJ*** Use by unauthorized persons is prohibited. ***
_&dJ**
:showjob job=@j
FRI, MAR 17, 2000, 11:50 AM

JOBNUM STATE IPRI JIN JLIST INTRODUCED JOB NAME
#J11263 EXEC QUIET 10S LP FRI 1:35A JHTTPD,MGR.APACHE
#J11276 EXEC 10S LP FRI 1:38A JINETD,MANAGER.SYS

2 JOBS (DISPLAYED):
 0 INTRO
 0 WAIT; INCL 0 DEFERRED
 2 EXEC; INCL 0 SESSIONS
 0 SUSP
JOBFENCE= 5; JLIMIT= 9; SLIMIT= 60

CURRENT: 3/17/00 11:50

JOBNUM STATE IPRI JIN JLIST SCHEDULED-INTRO JOB NAME

#J11259 SCHED 15 10S LP 3/18/00 1:00 BACKUP,OPERATOR.SYS

1 SCHEDULED JOB(S)

Redirecting Results
Getting the host command output in a record makes it easy to process and react on
their execution. However, if you need to process these results further, it might not be
flexible enough. You can use the Output parameter and save the output into a local
file. You have to open the file before calling the HostCommand() application
method.

48 • Some Basic Scripting Operations Qedit Scripting Language User Manual

mpeConn = openconnection(connection: "Calvin");
localFile = newfile();

hostCmdResult = hostcommand(connection: mpeConn,
command: "showjob job=@j",
output: localFile);

In this case, the hostCmdResult return variable is still a record but contains only
the ExitCode element. The host command output is automatically inserted in the
local file specified in the Output parameter.

To Wait or Not To Wait
By default, host command execution is synchronous. This means that the QSL script
suspends until the output is received from the host. For commands that may take a
long time to execute, you might want to continue editing other documents. In order
to do this, you need asynchronous command execution. This is done using the Wait
parameter of the HostCommand() application method.

By default, this parameter is set to True i.e. QSL waits for the command to
complete. If you wish to use asynchronous execution, simply set Wait to False.
Qedit immediately resumes script execution.

How do you know when the host command is finished executing? You have to use
the HostCommandStatus() application method. This method also uses the Wait
parameter to indicate if you want to wait until the execution is complete before
returning to the next statement in the script. By default, the method does not wait i.e.
the parameter is False.

mpeConn = openconnection(connection: "Calvin");
localFile = newfile();

hostCmdResult = hostcommand(connection: mpeConn,
command: "longcmd.cmd.devacct",
output: localFile,
wait: false); -- Does not wait for completion

otherfile.activate(); -- Switch to other opened document

cmdIsDone = false;
repeat until cmdIsDone -- Loop until the command is done

checkStatus = hostcommandstatus();
cmdIsDone = checkStatus.finished; -- Save Finished value

endrepeat

result = dialog("Longcmd has completed!");
localfile.activate(); -- Switch to host command results file

HostCommandStatus() sets and returns the Finished record element to
indicate whether the command is still executing or not. In the previous example, the
Repeat block executes until Finished is True.

If the HostCommandStatus() method is called in an undefined context, you
should also check the Running record element. A value of False indicates there
are no host commands currently executing. A modified code segment would look
like:

Qedit Scripting Language User Manual Some Basic Scripting Operations • 49

checkStatus = hostcommandstatus();

if checkStatus.Running then -- Is there an active host command?
cmdIsDone = false;
repeat until cmdIsDone -- Loop until the command is done

checkStatus = hostcommandstatus();
cmdIsDone = checkStatus.finished; -- Save Finished value

endrepeat
result = dialog("Host command has terminated!");

else
writelog("No host command currently executing!");

endif

Is It Really Executing?
Even though the HostCommandStatus() method tells you the host command is
currently executing, it does not necessarily mean it is actually doing useful work. As
far as Qedit is concerned, the host command has not terminated but the command
might not be doing anything on the host. To verify this, HostCommandStatus()
returns 2 other variables that might help: ProgressTime and Step.

ProgressTime is the CPU time used by the host command. It represents the
number of milliseconds of CPU.

hostresult = hostcommand(connection: "Prod MPE",
command: "longcmd.cmd.devacct",
wait: false);

lastProgress = 0;
cmdIsDone = false;
repeat until cmdIsDone

checkStatus = hostcommandstatus();
cmdIsDone = checkStatus.Finished;
if lastProgress <> checkStatus.ProgressTime

writelog("CPU=" + string(checkStatus.ProgressTime));
lastProgress = checkStatus.ProgressTime;

else
writelog("No CPU used. Stuck at " + string(lastProgress));

endif
endrepeat

Step contains the command currently executing. In a multi-command request, this
would be the last command encountered in the list.

hostresult = hostcommand(connection: "Prod MPE",
command: "longcmd.cmd.devacct",
wait: false);

lastStep = "";
cmdIsDone = false;
repeat until cmdIsDone

checkStatus = hostcommandstatus();
cmdIsDone = checkStatus.Finished;
if lastStep <> checkStatus.Step

writelog("Executing command: " + checkStatus.Step);
lastStep = checkStatus.Step;

else
writelog("Still executing: " + string(lastStep));

endif
endrepeat

Stopping Execution
If there are situations when you would like to interrupt an asynchronous host
command, you can use the HostCommandAbort() application method. This

50 • Some Basic Scripting Operations Qedit Scripting Language User Manual

method sends an abort request to the server. The server takes appropriate action to
terminate execution. The method has to be called from the same script as the
HostCommand() method.

By default, HostCommandAbort() is asynchronous. This means it does not wait
for an acknowledgement from the server and returns to the script immediately. In the
mean time, the host process might still be running for a few seconds. All host output
is discarded. Rather the result list contains the Running and Finished elements,
both set to True, to indicate that the process has terminated. The result list also
contains the ProgressTime, Step and ProcessID elements to provide
information of where the process was at when the abort occurred.

You can get HostCommandAbort() to work synchronously using the Wait
parameter set to True. The method would then waits for server confirmation that the
process has indeed terminated. The result list contains the Running and Finished
elements, both set to True, to indicate that the process has terminated. It would also
contain the ExitCode element to indicate the host command execution outcome and
the CommandOutput element which contains host command output received up to
the point of the abort. Of course, the output is likely to be different than a succesful
uninterrupted execution of the same commands.

Stop button

If the script does not call HostCommandAbort() and is still executing, you can
interrupt the host command by clicking on the Stop button of the Script Control
dialog box.

Stop button

If the script has already stopped executing but the host command is still going, the
only way you can interrupt it is by breaking the connection using the Disconnect
command of the File menu. Remember that this operation automatically closes all
files currently opened on this connection. If file changes have not been saved, Qedit
prompts for save confirmation.

Dealing with Connection Templates
In many cases, connection templates are created permanently in the connection
template files using the Connection List dialog box. You can reference these
templates in all your scripts. To write faul-tolerant scripts, you might want to check
the existence a particular connection template and, if it does not exist, create one for
the duration of the script execution. Similarly, there are times when you might need
to create connections on-the-fly using different logon information. QSL provides a
number of application and connectiotemplate methods to help you deal with these
situations.

Find a Connection Template
The FindConnectionTemplate() application method retrieves information
about a connection template. It needs the name of the connection you are looking for
and, if it finds it, creates a ConnectionTemplate object. If it cannot find the
connection, it returns an undefined variable.

The parameter is a string. QSL does a caseless match i.e. uppercase and lowercase
letters are treated the same. Except for this, the name must match exactly.

Qedit Scripting Language User Manual Some Basic Scripting Operations • 51

connobject = findconnectiontemplate("Prod UX");
if typeof(connobject) = qedit.typeundefined then

writelog("The connection does not exist!");
else

writelog("The connection has been found.");
endif

Once the object is created, you can view its properties and modify them with the
SetLogonInformation() ConnectionTemplate method. For security reasons,
QSL always resturns the passwords as null strings. So, there is no way to determine
what the current passwords are. However, nothing prevents you from entering new
passwords.

Create a Connection Template
If the script requires a specific connection, it can create it using the
NewConnectionTemplate() application method. In order to do this, you have
to supply individual elements making up a valid connection. This includes a
connection name, a host name and valid logon information.

sub createconn();
connname="New UX Conn"; -- Assign a name
hostname="Prod UX"; -- Which host?
logoninfo={}; -- Setup logon information
logoninfo.ConnectionType = "unix";
logoninfo.Username = "pgmr";
logoninfo.Password = "hispass";
newconn = newconnectiontemplate(Name: connname,

Host: hostname,
LogonInformation: logoninfo);

return newconn; -- Return the new connection template object
endsub

connobject = findconnectiontemplate("Prod UX");
if typeof(connobject) = qedit.typeundefined then

writelog("The connection does not exist!");
connobject = createconn(); -- Create a new one

else
writelog("The connection has been found.");

endif

Delete a Connection Template
Once you are done with a connection template, you can remove it from the
connection template file using the DeleteConnectionTemplate() application
method. The method accepts the name of a connection template passed as a string or
a connection template object created by a call to FindConnectionTemplate(),
NewConnectionTemplate() or GetConnectionTemplateIterator()
application methods.

52 • Some Basic Scripting Operations Qedit Scripting Language User Manual

sub createconn();
connname="New UX Conn"; -- Assign a name
hostname="Prod UX"; -- Which host?
logoninfo={}; -- Setup logon information
logoninfo.ConnectionType = "unix";
logoninfo.Username = "pgmr";
logoninfo.Password = "hispass";
newconn = newconnectiontemplate(Name: connname,

Host: hostname,
LogonInformation: logoninfo);

return newconn; -- Return the new connection template object
endsub

existingConnection = true;

connobject = findconnectiontemplate("UX Conn");
if typeof(connobject) = qedit.typeundefined then

writelog("The connection does not exist!");
connobject = createconn(); -- Create a new one
existingConnection = false;

else
writelog("The connection has been found.");

endif

-- Use the new connection template
performactions();
-- Processing has completed

if not existingConnection then
deleteconnectiontemplate(connobject); -- Done. Get rid of it

endif

Getting All Connection Templates
The GetConnectionTemplateIterator() application method retrieves all
existing connection templates into an iterator object. The iterator object can then be
scanned to perform global searches and changes. For example, let's say the password
for the pgmr user on all Unix hosts has expired. Instead of manually modifying all
existing connections, you can write a script to perform a global change.

conniterator = getconnectiontemplateiterator();

repeat for connobject in conniterator
if connobject.logoninformation.connectiontype = "Unix" and

connobject.logoninformation.username = "pgmr" then
templogon = connobject.logoninformation;
templogon.password = "newpass";
connobject.setlogoninformation(templogon);

endif
endrepeat

Clone a Connection Template
If you wish to make an exact copy of an existing connection template quickly and
efficiently, you can use the FromTemplate parameter on the
NewConnectionTemplate() application method. The parameter requires a
connection object created with a previous call to NewConnectionTemplate(),
FindConnectionTemplate() or
GetConnectionTemplateIterator(). You only need to specify a new
connection name on the NewConnectionTemplate() call.

Qedit Scripting Language User Manual Some Basic Scripting Operations • 53

sub copyconn()
testconn = findconnectiontemplate("test"); -- Get existing info
if typeof(testconn) = qedit.typeobject then

writelog("Test connection found");
else

writelog("Test connection NOT found");
endif

result = newconnectiontemplate(name: "Copy UX", -- Create new conn
fromtemplate: testconn);

if typeof(result) = qedit.typeobject then
writelog("Connection Copy UX copied");

else
writelog("Connection Copy UX NOT copied");

endif
endsub

findconn = findconnectiontemplate("Copy UX");
if typeof(findconn) = qedit.typeundefined then

writelog("Connection does not exist");
copyconn(); -- Create a copy

else
writelog("Connection already exists. Deleting!");
deleteconnectiontemplate(findconn); -- Delete existing
copyconn(); -- Create a copy

endif

Qedit Scripting Language User Manual Executing and Testing Scripts • 55

Executing and Testing Scripts

The Script Menu
The Script menu provides all the commands you need to work with scripts. The
Compile command analyzes the active document and reports any QSL syntax
errors. The Run command compiles the script and, if there are no syntax errors,
executes it.

The Save compiled script command allows you to save the current script in
compiled form. Compiled scripts are not readable and can only be executed. You
have to explicitly assign a name before you can use this command.

The Manage scripts command brings up the corresponding dialog box. This
dialog box allows you to maintain the list of loaded scripts. The Script control
dialog box is another dialog box that provides control over script execution. It also
contains list boxes for easier script debugging. You can display the Script control
dialog box with the Control panel command.

Controlling Script Execution
There are different ways to execute a script. You can use the Run command on the
Script menu to execute the script in the active document. If you have pre-loaded
scripts with On Command statements, these commands also appear on the Script
menu. Selecting a command starts the execution of the corresponding On command
section. Once a script is started, you do not really have direct control over its
execution. The Script control dialog box has been designed to fill that gap.

The Script Control dialog box is often referred to as the Script Control Panel or
SCP.

56 • Executing and Testing Scripts Qedit Scripting Language User Manual

Script execution control

Window expansion control

Script control dialog box

The dialog box is independent from the document windows. You can leave it open at
all times even while making changes to documents. This way, you can move it out of
the way to see text changes made by the script.

You can display the dialog box using the Control panel command on the Script
menu. You can also display it or hide it dynamically right from the script itself. To
display the dialog box, enter:

qedit.showscp = true;

To hide it, enter:

qedit.showscp = false;

This dialog box gives controls similar to a tape recorder. There are 4 control buttons
at the top, one on the of the log window and one on the left of the source code
window.

Run Button

Run button

The Run button begins execution of the currently active script document.

Run button

Pause Button

Pause button

The Pause button allows you to temporarily suspend execution. To resume
execution, click on the Run or Step-through button.

Pause button

Qedit Scripting Language User Manual Executing and Testing Scripts • 57

Stop Button

Stop button

The Stop button interrupts the execution immediately. You can only continue
execution by starting from the beginning using the Run button. If the dot is gray, the
script is not executing thus the button has no effect when clicked. If the dot is red,
the script is executing.

If a host command is executing at that time, it is also stopped. The output received
might be incomplete.

Stop button

Step-through Button

Step-through button

The Step-through allows you to step through the script, one statement at a time.
The execution starts the first time you click on it. You need to click twice on each
statement in the script:

1. the first click moves the current statement indicator in front of the next
executable statement.

2. the second click actually executes the statement.

Step-through button

Source Code Window Expansion
When you first start up Qedit and open the Script control dialog box, the source
code window is minimized. That is, the source window is reduced to a single line. If
you have run a script, it displays the name of the script. The Source Code
Window Expansion control button at that point appears as a right-pointing
arrowhead.

To expand the window, simply click on the Source Code Window Expansion
control button. The arrowhead now points downward and the window displays a set
of script statements.

Current statement indicator

If you use the Step-through button to execute the script, the current statement is
identified by a small arrow.

Current statement indicator

Here is a sample Script control dialog box with information in the log and script
windows:

58 • Executing and Testing Scripts Qedit Scripting Language User Manual

Script Control panel with expanded log and script windows

Testing Your Scripts
Like any programming language, writing a program, in our case a script, is only part
of the work. In a lot of instances, it is probably a small part of the overall process.
Getting the script to do the work it is designed to do is a big part of the process. You
should test your scripts using all kinds of scenarios. Since you are possibly dealing
with critical information, you have to make sure that you are fabricating invalid data
or wiping out valid data. Qedit provides a few simple tools to test and debug scripts.

Because of the nature of QSL, you could even write scripts to test other scripts,
making sure the results are the ones you expected.

Interactive Debugging
The Dialog() built-in function allows scripts to interact with users as the scripts
execute. It can be used to give feedback to the user and get dynamic information. It
is also very useful to debug scripts.

The function requires at least one parameter, a string. It allows for 2 other optional
parameters: a Cancel button and a text box for user input. It always returns a record
showing which button has been used and, optionally, the text entered by the user.
The element names are respectively, Button and EnteredText.

Displaying Informative Messages
In its simplest form, the Dialog() function displays some text in a message dialog
box along with an OK button. The script's execution is suspended until the user hits
the OK button. In this case, the returned value only contains the Button element and
it is always set to 1.

Qedit Scripting Language User Manual Executing and Testing Scripts • 59

The following function call:

result = dialog("Step 1 of 10: Opening the host file");

displays this dialog box:

Simple message from the Dialog() function

Using a Cancel Button
You can add a Cancel button to the message dialog box simply by specifying a non-
zero value as the second parameter to Dialog(). The returned value only contains
the Button element. It is set to 1 if the user hit the OK button. It is set to 2 if the
user hit the Cancel button. For example, the following code,

result = dialog("Step 2 of 10: Should I continue?", 1);
if result.button = 2 then -- Cancel button

stop; -- Stop execution
endif

produces the following dialog box:

60 • Executing and Testing Scripts Qedit Scripting Language User Manual

Dialog box with Cancel button

Prompting For Input
You can also get the Dialog() function to prompt the user for some input. The
function only allows one text box. You only have to specify a third parameter on the
function call. This parameter must be a string but it can be an empty string. This
string represents the default value in the text box. You can still choose to have only
the OK button or have both buttons. The returned record contains the Button
element to indicate which button has been pressed. The record also contains the text
entered in the EnteredText element.

If the user clicks Cancel, EnteredText always contains the default value. For
example,

result = dialog("Step 3 of 10: Should I sort on Name or number?",
1, "Name");

if result.button = 2 then -- Cancel button
stop; -- Don't sort after all

else
sortOn = pos({"Name", "Number"}, result.enteredtext);
if sortOn = 1 then -- Sort on Name

-- call name sort subroutine
else

if sortOn = 2 then -- Sort on Number
-- call number sort subroutine

else
result1 = dialog("Invalid sort option");
stop;

endif
endif

endif

the dialog box looks like this:

Dialog box prompting for user input

Qedit Scripting Language User Manual Executing and Testing Scripts • 61

Logging Messages
Using the Dialog() function is nice because it provides immediate feedback.
These advantages are also its disadvantages. The user has to be aware of these
dialogs otherwise the script might be sitting there waiting for someone to click a
button. The dialog box also hides the document windows, or parts of them, and it has
to be moved out of the way if the user wants to visually inspect the text.

An alternative to the Dialog() function is to use Writelog(). This function
allows you to write messages to the log window of the Script control dialog box.
The Script control dialog box does not have to be opened in order to use
Writelog(). Messages are written to the log and are displayed next time you open
the dialog box.

Keep in mind that the log window is cleared automatically when a script starts
executing.

Log Window Expansion
When you first start up Qedit and open the Script control dialog box, the log
window is minimized. That is, the log window is reduced to a single line. If you have
run a script, the log window displays the last message, if any, sent to it via
Writelog(). The Log Window Expansion control button at that point appears
a right-pointing arrowhead.

To expand the log window, simply click on the Log Window Expansion control
button. The arrowhead now points downward and the log window displays the first
set of messages. If there are additional logged messages, you can use the scroll bar
to move up or down the list. The log window can hold approximately 500 lines.

Debugging Tips
Here are a few tips that can help you be more efficient at writing and testing scripts.

Undo Your Changes
If the script is opened, Qedit always executes the script as it currently appears in the
document window. It does not use the version saved on disc. This means that you
can make changes to a script and test them right away without doing a Save. If the
changes you have made do not work, you can make more changes or you can back
them out one at a time using the Undo tool. If you prefer to go back to the original
version, you can re-open the file or use the Revert command on the File menu.

Checking Identifiers
Misspelling an identifier can cause some grief when trying to debug a script.
Because of a typing mistake, Qedit might decide to create a new variable but one that
is of undefined type or not initialized. Use the Typeof() function to check the data
type of a variable. This way, you can be sure that the variable is defined the way you
expect it to be.

62 • Executing and Testing Scripts Qedit Scripting Language User Manual

Displaying Invisibles
If you are working with tab characters, you can not distinguish an empty area filled
with spaces from another one with tab characters. The Show invisibles command
on the View menu can be enabled manually to display small symbols to represent
spaces, tab characters and end-of-line markers. If you want, you can enable that same
function from a script using:

file.showinvisibles = true;

If you want to hide them again, use:

file.showinvisible = false;

Infinite Loops
If you think a running script is in a loop, there are two ways to stop it. Both solutions
are available on the Script Control dialog box. To display the control panel, select
the Control panel command on the Script menu. The menu commands are
available even though the script is still executing.

If you want to terminate the script immediately, use the Stop control button.

If you want to see what part of the script is executing, use the Pause control button.
You can then use the Step-through control button to go through the script, one
statement at a time. You should be able to determine if the script really in a loop or
simply taking a long time to complete.

Qedit Scripting Language User Manual Getting the Most Out of Scripting • 63

Getting the Most Out of Scripting

Coding Tips and Techniques
As with any programming language, there are certain things you should do to write a
script that will compile and run. This section contains a number of simple but
valuable tips and techniques to help you become an expert script developer.

Checking Results of a Search
The Find() document method always returns a value to indicate success or failure.
You should always check this result before doing anything with the found string. If
the search fails i.e. no matched string, the cursor does not move. This means the
LastFoundLength and LastFoundColumn properties are still pointing the last
cursor position or selection. However, LastFoundLine is automatically set 0 after
an unsuccessful search.

Checking the Cursor
The insertion point can take many forms. It can be a simple caret where the cursor
sits between 2 characters in the text. It can be a simple selection where one or more
characters on the same line have been selected. It can be a complex selection where
many characters have been selected on multiple lines. It can also be a complex
selection making up a rectangle.

You can check the Selection document property to determine exactly what the
insertion point looks like. This property is record containing line and column
coordinates and optionally a boolean value in the case of a rectangular selection. The
property can have up to 3 elements:

• Start: a record containing the starting location coordinates. The coordinates are
stored as Line and Column elements.

• End: a record containing the end location coordinates. The coordinates are
stored as Line and Column elements.

• Rectangular: a boolean. If True, indicates a rectangular selection.

Caret Only
If there is no selection, the Selection property contains the Start element only. In
this case, the length of the Selection property is 1.

64 • Getting the Most Out of Scripting Qedit Scripting Language User Manual

{Start: {Line: 1, Column: 1}}

Single-line Selection Without End-of-line
If the selection is one or more characters on a single line but does not include the
end-of-line marker, both Start and End elements are present. The length of the
Selection property is 2. Of course, the Start.Line and End.Line elements are the
same.

{Start: {Line: 1, Column: 1}, End: {Line: 1, Column: 3}}

Line Including End-of-line
If the selection is one or more lines and includes the end-of-line marker of the last
line, the Selection property contains the Start and End elements. The length of the
Selection property is 2. The Start.Line and End.Line elements are different. The
Start.Column element always contains 1 and the End.Column element always
contains 0.

{Start: {Line: 1, Column: 1}, End: {Line: 3, Column: 0}}

Multi-line Selection
If the selection has many characters and spans more than one line, the record
contains both Start and End elements. The length of the Selection property is 2.
The Start.Line and End.Line elements are different. In this case, however, the
Start.Column can be 1 but does not have to. The End.Column should never be 0.
{Start: {Line: 1, Column: 1}, End: {Line: 3, Column: 3}}

Rectangular Selection
If the selection is rectangular, the Selection property contains all 3 elements: Start,
End and Rectangular. The length of the Selection property is 3. The Start.Line
and End.Line elements are different. The Start.Column can be 1 but does not
have to. The End.Column should never be 0. The Rectangular element is set to
True.

{Start: {Line: 1, Column: 1}, End: {Line: 3, Column: 3},
Rectangular: 1}

Writing For Reusability
It is good practice to write scripts in such a way that you can reuse them (or parts of
them) in other scripts. Here are a few tips that will help reusability. To make a
subroutine available to other scripts, you just have to load it ahead of time.

Always Name Your Scripts
Although QSL assigns default names to all the scripts, we recommend that you
always assign names yourself. This way, you can pick names that are meaningful to
you and your staff. With the Group keyword on the Name script attribute, you can
also group scripts and subroutines under explicit categories e.g. TextUtil, FileUtil,
etc.

Separate Functions From User Interface
You should separate functional sections from user interface sections. Let's use the
sample script "Append Text at End of Lines" on page 79 as an example. In this

Qedit Scripting Language User Manual Getting the Most Out of Scripting • 65

script, there are 3 subroutines. The AppendActiveDocument() subroutine is
really the main logic. The GetText() subroutine (not to be confused with the
GetText() document method) is used to prompt the user for some text. And that's
all it does. The AppendText() subroutine is then called to do the actual insert into
the current file. They are sort of specialized subroutines. This way, they all can be
called independently. For example, another script could retrieve text from another
source and call AppendText() to perform the insert operation. The latter does not
mind where the text is coming from as long as it receives enough information as
parameters.

Directory Iterators
Directory iterators are processed using REPEAT statements. A call to a
GetDirectoryIterator() method temporarily changes the current working
directory to the directory specified in the call. The information is retrieved and the
iterator object is built. Then, the current working directory is changed back to the
value just before the call.

Because of this, it is recommended that you do not change the current working
directory, the LocalCWD application property for local files or call the
ChangeCWD() connection method for host files, in the middle of the REPEAT
block.

Limiting Random Number Range
You can use the randseed() and rand() built-in functions to get random
numeric values. Both functions return a random number between 0 and 32,767.
However, if you want to narrow down this range to values between 1 and n where n
is a user-defined limit, you can use the following algorithm.

upperLimit = 25; -- Requests values between 1 and 25
randomResult = mod(rand(), upperLimit) + 1;

Is the File Opened?
If you wish to determine if a particular file is already opened, you can use the
FindOpenFile() method. The method searches the list of all currently opened
files and selects the ones matching the criteria you specified. This method always
returns a record. If no matching files were found, the record is empty.

fileOpened = findopenfile(matches: "diary.txt");
if fileOpened = {} then -- Record is empty. No match

result = dialog("Could not find the file!");
stop;

endif

Another way to check for the same condition is to look at the number of elements in
the record using the Length() built-in function.

fileOpened = findopenfile(matches: "diary.txt");
if length(fileOpened) = 0 then -- Record is empty. No match

result = dialog("Could not find the file!");
stop;

endif

If there were one or more matching files, the record contains the corresponding file
objects. However, even if the record contained only one entry, you can not use the
information with document methods. For example, this would be invalid:

66 • Getting the Most Out of Scripting Qedit Scripting Language User Manual

fileOpened = findopenfile(matches: "diary.txt");
if length(fileOpened) = 1 then -- Record has 1 element

findResult = fileOpened.find(string: "something");
endif

You have to extract the file object from the record into a new variable. This variable
would then have the proper type. The revised code would be:

fileOpened = findopenfile(matches: "diary.txt");
if length(fileOpened) = 1 then -- Record has 1 element

fileObject = fileOpened[1];
findResult = fileObject.find(string: "something");

endif

Has the File Been Opened?
If you want to control script errors like file open errors, you can use a Try-Recover
block. However, there are cases where part of script has to know about the success or
failure but does not have control over the Try-Recover block. For example, let's say a
script calls a generic subroutine to open files. The subroutine returns an empty string
in case of failure or a file object in case of success.

Checking for an empty string on a file object is invalid.

returnValue = openSub("diary.txt");
if returnValue <> "" then -- Invalid if file has been opened (object)

-- Some code
endif

You could use workarounds like coercing the return value as in:

returnValue = openSub("diary.txt");
if string(returnValue) <> "" then -- Works but not elegant

-- Some code
endif

This construct would not cause any script error but is not very elegant and might fail
if non-empty string is returned. A better solution is simply to test for the type of
return value.

returnValue = openSub("diary.txt");
if typeof(returnValue) = qedit.typestring then -- String is failure

-- Some code
stop;

else
if typeof(returnValue) = qedit.typeobject then -- Object is OK

findResult = returnValue.find(string: "something");
endif

endif

With Performance in Mind
Given a specific problem to solve, you can probably write a number of different
scripts that would all give the same results. However, some of these scripts might
execute very slowly while others might be lightning fast. Like all programming
languages, QSL has statements that require more resources than others. This section
includes information on things you should do, try to avoid or not do at all. All this to
get the most out of QSL.

Qedit Scripting Language User Manual Getting the Most Out of Scripting • 67

Is There a Selection?
You should not use the following construct to see if there is a selection:

If file.getselectedtext() = {} then

This statement retrieves the selection and compares it to an empty list. If there is no
selection, there is no penalty. However, if the selection included thousands of lines
on a host file, Qedit would retrieve all these lines before doing the comparison. This
simple statement might take a long time to complete.

The recommended approach is to check the length of the Selection object. This can
be done with the following:

If length(file.selection) = 1 then -- No text selected
Result = dialog("No text has been selected");

else
theSelection = file.getselectedtext(); -- Retrieves selected text

How Long Is The Selection?
If you expect the selection to have special characteristics like having only a few
characters on one particular line, check the line coordinates stored in the
selection document property. By looking at the start and end coordinates, you
can make sure the selection you are going to be working on seems reasonable for the
application.

If length(file.selection) = 2 then -- Some text selected
theSelection = file.selection;
startOnLine = theSelection.start.line;
endOnLine = theSelection.end.line;
if startOnLine <> endOnLine then

result = dialog("The selection spans more than one line!");
else

result = dialog("The selection is OK!");
endif

endif

Working With Single Characters
You should avoid writing scripts that perform operations on single characters. Let's
say you want to insert a line with an exact number of asterisks. Your first inclination
might be to use:

Repeat for inx from 1 to n
File.insert("*");

endrepeat

This would cause the Insert() document method to be invoked n times. That's
very inefficient. A better approach is to build the object with all the characters you
need and do a single call to the method. It would be something like this:

Asterisks = ""; -- Create a new string variable
Repeat for inx from 1 to n

Asterisks = Asterisks + "*"; -- Fill up the variable
Endrepeat
File.insert(Asterisks);

The Repeat statement simply fills up the Asterisks string variable with the
desired number of characters. All this happens in memory and is extremely fast. A
single call to Insert() is required to create the line, no matter the length of the
string.

68 • Getting the Most Out of Scripting Qedit Scripting Language User Manual

Overloading Parameters
Qedit does not check parameter data types automatically. The subroutine can
explicitly check the data types using the Typeof() function and determine a
different course of action based on that.

sub mySub(parm1)
if typeof(parm1) = qedit.typestring then

return parm1 + "XYZ;
endif
if typeof(parm1) = qedit.typeinteger or

typeof(parm1) = qedit.typefloat then
return parm1 * 100;

endif
return "UNDEFINED";

endsub

You could then call it with:

returnString = mySub("ABC"); -- returns "ABCXYZ"
returnNumber = mySub(123); -- returns 12300

Variables Versus Properties
QSL has been designed with performance in mind and, as such, uses different
methods to get at the information in the most efficient way possible. Even with that
though, there are certain operations that are more efficient than others. When dealing
with properties, you have the choice to access the information directly or to copy the
information into a variable which will subsequently be used for processing. Access
to variables is inherently faster than direct access. If the same property value is going
to be used repeatedly, you should consider copying the information into a variable.
For example, the following code segments perform the same operations.

if file.lastfoundline <> "" then
writelog (file.lastfoundline);

endif

The first segment is slightly less efficient, even though it contains a smaller number
of lines, than the second.

lastline = file.lastfoundline ;
if lastline <> "" then

writelog (lastline);
endif

Of course, there is no noticeable difference in execution time between these 2
segments. However, in a more complex script, using the second approach might
make a difference.

Short-circuit Evaluation
QSL uses short-circuit evaluation when checking conditions. This means that in
complex conditions, control is transferred as soon as Qedit is able to determine the
outcome. It also means that not all conditions will be checked every time. In the case
of an AND condition, if the first expression is false, Qedit knows the overall
condition will be false, no matter what the other expression evaluates to. In the case
of an OR condition, if the first expression is true, Qedit knows the overall condition
will be true, no matter what the other expression evaluates to.

You can use this feature to improve performance of resource-intensive scripts. You
would put the simpler conditions first in the condition list. You should also put the
conditions that are more likely to fail or succeed first.

Qedit Scripting Language User Manual Getting the Most Out of Scripting • 69

Off-the-Shelf Solutions
In this section, you will find a selection of sample scripts. These are fairly simple
scripts but they should give you a good feel for the power of QSL. You will find
these scripts and others in the c:\robelle\qedit\system directory and
subdirectories. You can also connect to our web site at www.robelle.com to
download all the latest scripts.

Initializing a Test File
Here is an example of the FillFile() subroutine used throughout the Qedit test
suite. It demonstrates how you can use the Insert() method to add lines to a file.

sub FillFile(file)

lines = {}; -- creates an empty list

file.delete(startline: 1, endline: file.linecount); -- empty file
file.tabs(ClearAll: true);
file.tabs(SetEvery: 5);

lines = lines + ""; -- Empty line
lines = lines + "A";
lines = lines + ""; -- Empty line
lines = lines + "bb";
lines = lines + ""; -- Empty line
lines = lines + "CCC";
lines = lines + ""; -- Empty line
lines = lines + "dddd";
lines = lines + ""; -- Empty line
lines = lines + "EEEEE";

file.insert(at:{line: 1, column: 1}, text: lines);

endsub

Comparing Two Files
Below is the CompareFile() subroutine from the Qedit test suite. It is a general
purpose subroutine that compares the contents of two files. If there are any
differences, it writes an error message to the log window. CompareFile() returns
True if the files are identical and False otherwise.

http://www.robelle.com/

70 • Getting the Most Out of Scripting Qedit Scripting Language User Manual

sub comparefile(file1, file2, testname)
returnvalue = false;
if file1.linecount <> file2.linecount

message = "Number of lines mismatch: ";
message = message + file1.title;
message = message + " has ";
message = message + string(file1.linecount);
message = message + " line(s)";
message = message + " and ";
message = message + file2.title;
message = message + " has ";
message = message + string(file2.linecount);
message = message + " line(s)";
writelog("Failure in " + testname);
writelog(message);

else
same = true;
lineNum = 1;
repeat while same and lineNum <= file1.linecount

lineFile1 = file1.gettext(startline: lineNum,
endline: lineNum);

lineFile2 = file2.gettext(startline: lineNum,
endline: lineNum);

lineFile1 = lineFile1[1];
lineFile2 = lineFile2[1];
if lineFile1 <> lineFile2

finished = false;
inx = 1;
if length(lineFile1) <> length(lineFile2)

message = "Files at line ";
message = message + string(lineNum);
message = message + " are not the same length. ";
message = message + file1.title;
message = message + " is '";
message = message + lineFile1;
message = message + "' and ";
message = message + file2.title;
message = message + " is '";
message = message + lineFile2;
message = message + "'";
writelog("Failure in " + testname);
writelog(message);
finished = true;

endif
repeat while not finished

if inx > length(lineFile1)
finished = true;

endif
if lineFile1[inx] <> lineFile2[inx]

message = "Mismatch at column " + string(inx);
message = message + " File1 character = '";
message = message + lineFile1[inx];
message = message + "' (";
message = message + string(code(lineFile1[inx]));
message = message + ") File2 character = '";
message = message + lineFile2[inx];
message = message + "' (";
message = message + string(code(lineFile2[inx]));
message = message + ")";
writelog("Failure in " + testname);
writelog(message);
finished = true;

endif
inx = inx + 1;

endrepeat
same = false;

endif
lineNum = lineNum + 1;

endrepeat

if same then

Qedit Scripting Language User Manual Getting the Most Out of Scripting • 71

returnvalue = true;
endif

endif

return returnvalue;

endsub

Insert a Signature or a Timestamp
This script is an easy way to insert some predefined text into a file. The script adds a
submenu called Macros to the Script menu. On that submenu, there are 2
commands:

• Signature: inserts 3 lines at the cursor position in the document window

• Timestamp: inserts the current date and time at the cursor position in the
document window into a file

The Signature command inserts lines of text that you have typed right in the script.
It can be as long as you need and in the format that you want.

After running the Timestamp command, you should see the PC's current date. The
date and time are in the short format.

The script should be saved in the c:\robelle\qedit\user\autoload
directory e.g. macros.qsl. If you are already in Qedit for Windows, you should
exit and restart it.

72 • Getting the Most Out of Scripting Qedit Scripting Language User Manual

name macros;

Property CurrentFile = 0; -- shared global without a mainline

sub CheckFileOpen
flag = false;
file = qedit.activefile; -- we need an object to insert into
if typeof(file)=qedit.typeundefined then

result=dialog("You must have a file open");
else

CurrentFile = file; -- update shared Global variable
flag = true;

endif;
return flag;

endsub

sub timestamp
if CheckFileOpen() then

timestamp = datetime();
timestamp = timestamp.fmtshortdatetime();
CurrentFile.insert(timestamp); -- CurrentFile is global

endif
endsub

on command "&Timestamp"
timestamp();

endon

sub signature
if CheckFileOpen() then

sig = {"Ralph J. Smith",
"Email: smithr@ourfriendlyfirm.com,
"Telephone: 345-678-9012"};

-- create a list of 3 strings
CurrentFile.insert(sig); -- CurrentFile is shared global file

endif
endsub

on command "&Signature"
signature();

endon

Insert a Rectangular Selection
In Qedit for Windows, there is no single command to insert a rectangular selection.
You have to create an empty space using the Insert column command, for
example, select the empty area and then paste the clipboard. That's tedious. The
following script allows you to do the same operation with one command.

If you want to see the PasteInBox command on the Script menu, put the script file
in the c:\robelle\qedit\user\autoload directory.

Qedit Scripting Language User Manual Getting the Most Out of Scripting • 73

name PasteInBox;
-- insert Clipboard into an area the size of the rectangular selection

Property CurrentFile = 0; -- shared global variable
Property CurrentSel = 0;

sub CheckFileOpen
flag = false;
file = qedit.activefile; -- we need an object to insert into
if typeof(file)=qedit.typeundefined then

result=dialog("You must have a file open");
else

CurrentFile = file; -- update shared Global variable
flag = true;

endif
return flag;
endsub

sub CheckSelection
flag = false;
if CheckFileOpen() then

s = CurrentFile.selection;
if length(s) = 1 then -- Oops, only a caret is active

r = dialog("You must have an active selection to fill.");
else

CurrentSel = s;
flag = true;

endif
endif
return flag;

endsub

-- Mainline

if CheckSelection() then
startsel = CurrentSel.start;
startl = startsel.line;
startc = startsel.column;
endsel = CurrentSel.end; -- unknown property if no selection
endl = endsel.line;
endc = endsel.column;
if length(CurrentSel) = 2 then --- oops, not rectangular

r = dialog("PasteInBox only works on rectangles.
Use Control-Drag.");

stop;
endif
width = endc - startc + 1; -- insert some spaces to replace
spaces = "";
repeat for x from 1 to width by 1

spaces = spaces + " ";
endrepeat
-- insert a new rectangle of same size, consisting of spaces
CurrentFile.insertcolumn(startline: startl, endline: endl,

atcolumn: startc, text: spaces);
-- rectangle should still be selected, so now paste-replace
CurrentFile.Paste();
-- Cancel selection, Position caret at upper left corner:
CurrentFile.select(startline: startl, startcolumn: startc);

endif

Fill a Rectangular Area With Asterisks
The following scripts allow you to fill a predefined rectangular area with asterisks.
The first one inserts a block of asterisks as long and wide as the currently selected
area.

74 • Getting the Most Out of Scripting Qedit Scripting Language User Manual

name InsertStars;
-- insert a rectangle of stars

Property CurrentFile = 0; -- shared global variable
Property CurrentSel = 0;

sub CheckFileOpen
flag = false;
file = qedit.activefile; -- we need an object to insert into
if typeof(file)=qedit.typeundefined then

result = dialog("You must have a file open");
else

CurrentFile = file; -- update shared Global variable
flag = true;

endif
return flag;

endsub

sub CheckSelection
flag = false;
if CheckFileOpen() then

s = CurrentFile.selection;
if length(s) = 1 then -- Oops, only a caret is active

r = dialog("You must have an active selection to fill.");
else

CurrentSel = s;
flag = true;

endif
endif
return flag;

endsub

-- Mainline
if CheckSelection() then

startsel = CurrentSel.start;
startl = startsel.line;
startc = startsel.column;
endsel = CurrentSel.end; -- unknown property if no selection
endl = endsel.line;
endc = endsel.column;
if length(CurrentSel) = 2 then --- oops, not rectangular

r = dialog("STARS only works on rectangles.
Use Control-Drag.");

stop;
endif;
width = endc - startc + 1;
stars = "";
repeat for x from 1 to width by 1

stars = stars + "*";
endrepeat
r = CurrentFile.insertcolumn(startline: startl, endline: endl,

atcolumn: startc, text: stars);
-- Cancel selection, Position caret at upper left corner:
CurrentFile.select(startline: startl, startcolumn: startc);

endif

This next script also fills an area with asterisks but this one replaces the contents of
the selected area.

Qedit Scripting Language User Manual Getting the Most Out of Scripting • 75

name ReplaceStars;
-- replace a rectangular selection with asterisks

Property CurrentFile = 0; -- shared global variable
Property CurrentSel = 0;

sub CheckFileOpen
flag = false;
file = qedit.activefile; -- we need an object to insert into
if typeof(file)=qedit.typeundefined then

result = dialog("You must have a file open");
else

CurrentFile = file; -- update shared Global variable
flag = true;

endif
return flag;
endsub

sub CheckSelection
flag = false;
if CheckFileOpen() then

s = CurrentFile.selection;
if length(s) = 1 then -- Oops, only a caret is active

r = dialog("You must have an active selection to fill.");
else

CurrentSel = s;
flag = true;

endif
endif
return flag;

endsub

-- Mainline
if CheckSelection() then

startsel = CurrentSel.start;
startl = startsel.line;
startc = startsel.column;
endsel = CurrentSel.end; -- unknown property if no selection
endl = endsel.line;
endc = endsel.column;
if length(CurrentSel) = 2 then --- oops, not rectangular

r = dialog("STARS only works on rectangles.
Use Control-Drag.");

stop;
endif
CurrentFile.delete(); -- delete current selection
width = endc - startc + 1;
stars = "";
repeat for x from 1 to width by 1

stars = stars + "*";
endrepeat
-- insert a new rectangle of same size, consisting of stars
r = CurrentFile.insertcolumn(startline: startl, endline: endl,

atcolumn: startc, text: stars);
-- Cancel selection, Position caret at upper left corner:
CurrentFile.select(startline: startl, startcolumn: startc);

endif

If you want to see the InsertStars or ReplaceStars commands on the Script
menu, put the script files in the c:\robelle\qedit\user\autoload
directory.

Draw a Box
This script draws a box with asterisks around a rectangular selection. It actually
replaces the characters that make up the top, bottom, left and right edges.

76 • Getting the Most Out of Scripting Qedit Scripting Language User Manual

name box;
-- draw a box of asterisks around a rectangular selection

Property CurrentFile = 0; -- shared global variable
Property CurrentSel = 0;

sub CheckFileOpen
flag = false;
file = qedit.activefile; -- we need an object to insert into
if typeof(file)=qedit.typeundefined then

result = dialog("You must have a file open");
else

CurrentFile = file; -- update shared Global variable
flag = true;

endif
return flag;

endsub

sub CheckSelection
flag = false;
if CheckFileOpen() then

s = CurrentFile.selection;
if length(s) = 1 then -- Oops, only a caret is active

r = dialog("You must have an active selection to fill.");
else

CurrentSel = s;
flag = true;

endif
endif
return flag;

endsub

sub make
if CheckSelection() then

startsel = CurrentSel.start;
startl = startsel.line;
startc = startsel.column;
endsel = CurrentSel.end; -- unknown property if no selection
endl = endsel.line;
endc = endsel.column;
if length(CurrentSel) = 2 then --- oops, not rectangular

r = dialog("Box only works on rectangles.
Use Control-Drag.");

stop;
endif
width = endc - startc + 1;
stars = "";
repeat for x from 1 to width by 1

stars = stars + "*";
endrepeat
-- delete the top of the box
CurrentFile.delete(startline: startl, endline: startl,

startcolumn: startc, endcolumn: endc,
rectangular: true);

-- insert the new top of the box
CurrentFile.insertcolumn(startline: startl, endline: startl,
atcolumn: startc, text: stars);
-- delete the bottom of the box
CurrentFile.delete(startline: endl, endline: endl,

startcolumn: startc, endcolumn: endc,
rectangular: true); -- insert the new bottom of the box

CurrentFile.insertcolumn(startline: endl, endline: endl,
atcolumn: startc, text: stars);

height = endl - startl + 1;
stars = "*";
-- delete the left side of box
CurrentFile.delete(startline: startl, endline: endl,

startcolumn: startc, endcolumn: startc,
rectangular: true);

-- insert left side of box
CurrentFile.insertcolumn(startline: startl, endline: endl,

Qedit Scripting Language User Manual Getting the Most Out of Scripting • 77

atcolumn: startc, text: stars);
-- delete the right side of box
CurrentFile.delete(startline: startl, endline: endl,

startcolumn: endc, endcolumn: endc, rectangular: true);
-- insert right side of box
CurrentFile.insertcolumn(startline: startl, endline: endl,

atcolumn: endc, text: stars);
-- Cancel selection, Position caret at upper left corner:
CurrentFile.select(startline: startl, startcolumn: startc);

endif
endsub

make(); -- dummy mainline. make is exported as a callable method

If you want to see the Box command on the Script menu, put the script file in the
c:\robelle\qedit\user\autoload directory.

Copying Files Between Systems
It's easy to automate copying files from one machine to another. This script can be
very useful if you have to copy files on a regular basis.

name CopyFiles;

sub docopy(localfilename, serverconnection, serverfilename)
localfile = open(localfilename);
localfile.select(startline: 1, endline: localfile.linecount);
localfile.copy();
serverfile = open(connection: serverconnection,

filename: serverfilename);
serverfile.select(startline: 1, endline: serverfile.linecount);
serverfile.delete();
serverfile.paste();
localfile.close();
serverfile.close(forceoverwrite: true);

endsub

docopy("diary.txt", "Production UX", "Diary");
docopy("cobolsrc", "Source MPE", "cobol.src");

Prompt Before Replacing
Currently, Qedit replaces all occurrences of a string in the specified range. You can
use the following script to confirm which string occurrence to replace.

78 • Getting the Most Out of Scripting Qedit Scripting Language User Manual

name ReplacePrompt;

filename = "";
connection = "";
file = false;

sub getFile ()
returnValue = False;
result = dialog("Which file to search?",2,"");
if result.button = 1 then

filename = result.enteredtext;
result = dialog("Host Connection, if not local?",2,"");
if result.button = 1 then

connection = result.enteredtext;
returnValue = True;

endif
endif
return returnValue;

endsub

result = dialog("String to Find and Replace?",2,"");
if result.button = 2 then

stop;
endif
target = result.enteredtext;
if (target = "") then

stop;
endif;

result = dialog("Replacement string?",2,"");
if result.button = 2 then

stop;
endif
replacement = result.enteredtext;
if (replacement = "") then

stop;
endif;

repeat while (typeof(file)<>qedit.typeobject)
if not getFile()

stop;
endif;

try
file = open(connection: connection, filename: filename);

recover
result = dialog("Unable to open that file. Try again.");

endtry
endrepeat

file.activate(); -- bring the file to the front
file.select(line:1, column:1); -- may be at previous location
if (file.find(regexp: target)) then

goFlag = true;
else

goFlag = false;
result = dialog("No matches in this file");

endif

repeat while (goFlag <> False)
result = dialog("Replace this one with " + replacement + "?",2);
if result.button=1 then -- Do this update
result = file.find(regexp: target, selectiononly: true,

replacewith: replacement);
if not (result) then

result = dialog("Error doing replacement!");
goFlag = false;

endif
endif
if (goFlag) and not (file.find(regexp: target)) then

goFlag = false;

Qedit Scripting Language User Manual Getting the Most Out of Scripting • 79

result = dialog("End of file.");
endif

endrepeat;

file.select(line: 1, column: 1); -- cancel last selection
file.close(forceoverwrite: true);

Append Text at End of Lines
This script prompts the user for a text string. Then, the script proceeds to append the
entered text at the end of each selected line in a file. If there are no selection, the text
is appended at the end of all the lines.

80 • Getting the Most Out of Scripting Qedit Scripting Language User Manual

name QSLUtil Append group "Utility" command "Append Text";

sub appendtext(file, startline, endline, text)

repeat for lineno from startline to endline

-- Position the caret at the end of the line:
file.select(startline: lineno, startcolumn: file.recordlength);
-- Insert the new text at the current position
file.insert(text);

endrepeat

endsub

sub gettext

result = dialog("Enter the text to append", 1, "");
if result.button = 1 then

return result.enteredtext;
else

return ""
endif

endsub

sub appendactivedocument

appendfile = qedit.activefile;
if not exists(appendfile) then

result = dialog("There is no document to append lines to");
else

thetext = gettext();
if length(thetext) 0 then

theselection = appendfile.selection;
startcolumn = theselection.start.column;
if length(theselection) = 1 then

-- Append to the entire file
startline = 1;
endline = appendfile.linecount;

else
startline = theselection.start.line;
if theselection.end.column = 0 then

endline = theselection.end.line - 1;
else

endline = theselection.end.line;
endif

endif
appendtext(appendfile, startline, endline, thetext);
-- Restore the selection
appendfile.select(range: theselection);

endif
endif

endsub

appendactivedocument();

Displaying Information From Directory Iterators
This script displays the directory tree structure starting from a specific directory. The
script prompts for a connection name and a start directory. It then proceeds to display
all subdirectories at lower levels from that point. The script uses the recursive
functionality of QSL subroutines to walk up and down the structure.

If the connection name is empty, it assumes the directory is on a local drive.

If the start directory is empty, Qedit starts from the current working directory. The
start directory can be an absolute or relative path. If you use a relative path, you have

Qedit Scripting Language User Manual Getting the Most Out of Scripting • 81

to know what is the current working directory. Failing that, you might get a listing
for another directory or get an error if the directory does not exist at that location.

sub getinitialinfo(promptmsg)

result = dialog(promptmsg, 1, "");

if result.button = 1 then
return result.enteredtext;

else
return ""

endif

endsub

sub getdirlisting(connection, startdir, levelindicator)

levelindicator = " " + levelindicator;

if string(connection) = "" then
localdir = getdirectoryiterator(startdir);
dirseparator = "\";

else
localdir = connection.getdirectoryiterator(startdir);
dirseparator = "/";

endif

repeat for direntry in localdir
if direntry.canonicaltype = "directory" and

direntry.name <> "." and -- Otherwise goes into a loop
direntry.name <> ".." then
writelog(levelindicator + direntry.name);
nextlevel = direntry.path + dirseparator + direntry.name;
getdirlisting(connection, nextlevel, levelindicator);

endif
endrepeat

endsub

-- Mainline

startconn = getinitialinfo("Enter connection name:");

startdir = getinitialinfo("Enter starting directory:");

if startconn = "" then
writelog ("Listing for local " + startdir);
connobject = "";

else
writelog ("Listing for " + startdir + " on " + startconn);
connobject = openconnection(startconn);

endif

getdirlisting(connobject, startdir, "");

Directories at lower levels are automatically indented. For example, the output for a
local directory would appear as:

82 • Getting the Most Out of Scripting Qedit Scripting Language User Manual

Listing for c:\personal
Expenses

1999
January
February

Agenda
Pictures

Family
Work
Travel

Robelle Script Library
Robelle provides utility scripts to expand Qedit's built-in feature set. These scripts
are stored in the System directory.

Sort Lines
This script is in the Autoload directory thus it is automatically loaded and available
from the Robelle submenu of the Script menu. It can be used to arrange lines of
text in sorted order.

The script sorts the selected lines. If it's a regular selection, whole lines are used as
the sort keys. If it's a rectangular selection, the selected columns only are used as the
sort keys.

The name of the script is QSLUtilSort. Since the script is automatically loaded,
all its subroutines are available to other scripts as methods.

SortActiveDocument() Method
The SortActiveDocument() method is the main entry point to the
QSLUtilSort script. This entry point assumes that you want to sort the active
document.

SortActiveDocument() accepts only one parameter. The parameter is a
boolean to indicate whether you want the lines to be sorted in ascending or
descending order. The default value is True and corresponds to ascending order. A
value of False sorts in descending order.

SortActiveDocument() does some assertion checks before calling the
subroutines that do the actual work. For example, SortActiveDocument()
ensures there is actually an active document and that some lines have been selected.
If everything looks fine, it calls the SortLines() method.

QSLUtilSort.SortActiveDocument(false); -- Sort in descending order

SortLines() Method
This method is a secondary entry point to the QSLUtilSort script. It can be used
to sort files other than the active document. It assumes the calling script has taken all
the necessary steps to ensure the information is correct e.g. the start and end line
numbers are correct.

SortLines() accepts 4 parameters:

• FileHandle (object): this is the file object corresponding to the file you want to
sort

• StartLine (integer): this is the line number of the first line to sort

Qedit Scripting Language User Manual Getting the Most Out of Scripting • 83

• EndLine (integer): this is the line number of the last line to sort

• Ascending (boolean): this indicates the desired sort order. It is optional and
the default is True (ascending).

QSLUtilSort.SortLines(file, 1, file.linecount, true);
-- Sort all lines in the file in ascending order

selectionStarts = file.selection.start.line;
selectionEnds = file.selection.end.line;
QSLUtilSort.SortLines(file, selectionStarts, selectionEnds, false);

-- Sort all lines in the selection in descending order

file.select(startline: selectionStarts, startcolumn: 10,
endline: selectionEnds, endcolumn: 20);

QSLUtilSort.SortLines(file, selectionStarts, selectionEnds, true);
-- Sort all lines in the selection in ascending order
-- Sort on text in columns 10 to 20

List Lines
There are 4 scripts in the Autoload subdirectory performing similar operations.
They are loaded automatically out of the System directory. They can be used to list
lines which contain a specified string, regular expression or pattern.

The ListAll script searches the current document only. The ListInclude, ListCopy
and ListUse scripts also scan referenced files. Referenced files can be Include files.
These are identified by $include, !include, #include or .include
statements. The ListInclude script is used for this type of search. Other
referenced files can be Use files. These are identified by Use statements and can be
searched using the ListUse script. Referenced files in COBOL source files are
identified on Copy statements. The ListCopy script can be used to scan them.

All these scripts use similar logic to extract and display the information. Informative
messages are listed in the log window of the Script Control dialog box. These
messages include the version number, error messages (if any) and a termination
message. The actual results are displayed in a local file. The scripts open a new file
for each execution. The scriptnames are QSLUtilListInclude,
QSLUtilListUse and QSLUtilListCopy respectively.

The ListAll script contains the main search logic. Its scriptname is
QSLUtilListAll. Once the script is loaded, all its subroutines are available to other
scripts as methods. The main subroutine is called ProcessListRequest. The
other 3 scripts are really shell scripts and are calling this method to perform the
actual search.

ProcessListRequest() Method
This is the main entry point to the QSLUtilListInclude script. It requires 2
parameters:

• SearchType (integer): this indicates the type of search to use: simple string,
regular expression or pattern.

• IncludeFile (string): this indicates whether or not to scan referenced files. This
parameter is required. The default is a null string (do not search referenced
files). The other possible values are "Copy", "Include" and "Use".

Possible values for SearchType are:

• 1: String

84 • Getting the Most Out of Scripting Qedit Scripting Language User Manual

• 2: Regular expression

• 3: Pattern

ProcessListRequest() performs some assertion checks e.g. there is an active
document, before calling the appropriate methods. If the IncludeFile parameter is
not supplied or contains a null string, only the active document is searched. If the
IncludeFile parameter is supplied, the active document and all related referenced
files, if any, are searched. The script always performs a caseless search no matter
which SearchType is requested. The subroutine then calls the ListAll()
method.

localFile = open("C:\personal\diary.txt");
QSLUtilListAll.ProcessListRequest(1, "Include");

-- Search for a string in Diary.txt
-- Scan referenced $Include files, if any

ListAll() Method
This is a secondary entry point to the QSLUtilListAll script. It can be used by
other scripts to start a search without user's intervention. The ListAll() method
has 5 parameters:

• FileHandle (object): file object corresponding to the document you want to
start searching from

• IncludeOption (integer): indicates whether Include files should be scanned.
Should match SearchReferenced parameter of FindAll() document
method.

• SearchString (string): the search string you want to search for

• SearchType (integer): the type of search string passed in SearchString

• OutputFile (object): a file object where the search results should go. This
parameter is optional. If it is not specified, the script opens a new file
automatically.

Possible values for SearchType are:

• 1: String

• 2: Regular expression

• 3: Pattern

localFile = open("C:\personal\diary.txt");
QSLUtilListAll.ListInclude(localFile, 1, "Dentist", 1);

-- Search for the string "Dentist" in Diary.txt and
-- Scan referenced $Include files, if any.
-- Results are sent to a new file.

MPE Compilers
This script is in the Scripts directory. It is designed to be loaded and then be
available from the Robelle submenu of the Script menu. You can load it manually
using the Manage Scripts command of the Script menu. If you wish to have it
loaded automatically, copy it to the Autoload subdirectory of the User directory. It
can be used to compile source programs written in most programming languages
supported on MPE.

Qedit Scripting Language User Manual Getting the Most Out of Scripting • 85

Informative messages are listed in the log window of the Script Control dialog
box. These messages include the version number, progress messages, error messages
(if any) and a termination message.

The output from the compilers is written to a host-temporary file called QSLCOMPO.
When the compilation terminates, the script opens the file and selects the last line.

The name of the script is QSLMPECompile. Once the script is loaded, all its
subroutines are available to other scripts as methods.

DoMPECompile() Method
This is the main entry point to the QSLMPECompile script. It requires only one
parameter:

• CompileCommand (string): MPE command name used to invoke the
compiler.

The script does not validate the information. It uses the parameter value to build the
complete the MPE command. That command has the following syntax:

CompileCommand currentFilename,,outputFilename

where:

• CompileCommand is the compiler command past as parameter. For example,
to compile a Cobol source file using Cobol85, the parameter would be
COB85XL.

• currentFilename is the name of the currently active document. The script fills
that in automatically.

• outputFilename is the name of the file that will receive the compilation
results. The script uses QSLCOMPO.

Let's assume the active document is COBPRG1.SRC.DEVACCT and we want to use
the Cobol85 compiler, you would call DoMPECompile with:

mpesrc = open(connection: "Dev MPE", filename: "cobprg1.src.devacct");
QSLMPECompile.DoMPECompile("cob85xl");

Qedit Scripting Language User Manual Reference • 87

Reference

Overview
This section gives a list of all the statements that are part of the scripting language
itself. They are mostly used for controlling the flow of a script, handling exceptions
and setting script attributes.

Script Attributes

Name
Assigns a name to the script. If not specified, Qedit uses the filename.

name scriptname command "commandString" group "groupName";

The script name is case-sensitive and the only required parameter. The Command
keyword allows you to specify exactly how the command is going to appear on the
Script menu. You specify a mnemonic by prefixing one of the characters with an
ampersand. For example,

name Exercise04 command "Exercise &4";

The script name is Exercise04 but the Script menu will show:

Exercise 4
Notice the number 4 is underlined. This means you can invoke the script simply by
typing ALT+S, 4 on your keyboard.

If you want a script to appear as a command with other scripts on a submenu, use the
Group keyword.

Option Private
When you create a compiled script using the Save compiled script command, by
default, Qedit saves the script code in compiled form, ready for execution and also
saves the source lines in encoded form so you can still use the Step-through
debugging feature in the Script Control dialog box.

If you do not want to get the encoded source lines, simply enter the Option
Private attribute anywhere in the script mainline (outer block).

88 • Reference Qedit Scripting Language User Manual

option private; -- Do not save source code
name "Test Script";

Property
Defines global variables that can be used in all scripts. If the Property keyword is
not specified and the variable is declared outside a subroutine block, the variable is
global to the script but can not be accessed by external scripts.

General syntax:

property variableName = initialValue;

A variable name must be provided but the initial value is optional.

Control Statements

Break
Interrupts a REPEAT loop. Normally, all statements in the REPEAT block are
executed until the condition is met. If you wish to terminate the loop before this
happens, enter a BREAK statement.

General syntax:

break;

Call
Explicitly execute a subroutine or method. Normally, subroutines and methods can
be executed implicitly and not mistaken for variable names if they are followed by
parentheses. If you do not wish to specify the parentheses, you can use the CALL
statement. A CALL statement can also be used to explicitly ignore a possible return
value.

General syntax:

call subroutine(parameter);

Error
Forces Qedit to report an error and take appropriate actions.

General syntax:

Error (errorvariable);

The parameter is optional. If specified, it can be a string or a record. If it's a string,
Qedit simply displays a message dialog box with the string. For example, if you
code:

Error ("You should not have hit that key!");

the message dialog box would show:

Qedit Scripting Language User Manual Reference • 89

User-generated error dialog box

If the parameter is a record, it has to have the same structure as for Qedit errors
returned by a TRY/RECOVER block. The line number and script name fields are
replaced by the actual line number and script name, so the information provided by
the user in these 2 fields is ignored.

IF, Else and Endif
Indicates statements that need to be executed under certain conditions.

General syntax:

if condition then
-- statements to be executed if condition is true

else
-- statements to be executed if condition is false

endif

The then keyword is optional. The else keyword and block are optional. Endif
is required.

Invoke
Executes another script's mainline.

invoke "scriptName";

The called script must have mainline code. The scriptName parameter is actually
the filename. If it is a local file, it only needs to follow the file system's pathname
syntax. If it's a host file, scriptName has 2 parts separated by a colon:

• the connection name

• the actual filename

Of course, the connection name must exist in your current Qedit configuration.

For example, to execute the globals.qsl script on the Dev UX connection, the
command would be:

invoke "Dev UX:/home/dev/scripts/globals.qsl";

On Command and Endon
Executes statements when certain events occur.

Adds commandname to the Script menu and executes the block if the menu
command has been selected:

90 • Reference Qedit Scripting Language User Manual

on Command commandname
-- statements to be executed

endon

Repeat and Endrepeat
Execute statements repeatedly until a condition is met.

Repeat statements while the condition is true:

repeat while condition
-- statements to be executed

endrepeat

Repeat statements until the condition is true (and always executes the block at least
once):

repeat until condition
-- statements to be executed

endrepeat

Repeat statements setting variable to start, and then adding step after every iteration
until the value of variable is greater than end:
repeat for variable from start to end

-- statements to be executed
endrepeat
repeat for variable from start to end by step

-- statements to be executed
endrepeat

Repeat statements for each item in list:

repeat for variable in list

All keywords are required. The list can also be an iterator object such as a directory
iterator.

Return
Used inside subroutines to return a value to the calling script. The subroutine stops
executing immediately and the specified value is returned to the calling statement.

return value;

The returned value is optional. If not specified, QSL returns a variable of undefined
type.

Stop
Terminates execution of the current script. Control returns to the calling script or to
Qedit depending on how the script was invoked.

Sub and Endsub
Define a subroutine. Subroutine can receive parameter, execute some code and return
a result.

General syntax:

Qedit Scripting Language User Manual Reference • 91

Sub subroutineName (parameterlist)
-- statements to be executed
return value

endsub

The parameter list is optional. For a subroutine without parameters, do not include
the parentheses. The return statement is optional.

Try and Recover
Executes statements and, in case of problems, executes a series of statements.

General syntax:

try
-- statements to be executed

recover (errorrecord)
-- statements to be executed if an error is detected

endtry

In case of an error, the variable errorrecord is created. The variable is a record and
contains information about the error.

• ErrorNumber: an error number

• LineNumber: the line number in the script where the error occurred. It is zero
if it is unknown.

• NumericParameter: Numeric parameter of the error.

• StringParameter: String parameter of the error.

• MessageText: The localized error message that you would normally see if you
did not trap the error.

• Script: Script name where the error occurred. It is blank if it is unknown.

See "Exception Handlers" on page 18 for details and examples of Try/Recover
blocks.

Built-in functions
Built-in functions look like subroutines or application methods because they have
parentheses with parameters after them. However, built-in functions can not be
prefixed with an object name such as a script name. For example, open() is an
application method so you can use qedit.open(file). On the other hand,
exists() is a built-in function and qedit.exists(variable) is invalid.

Also, unlike method calls, you can not use named parameters in a built-in function
call. Functions used positional parameter lists only. For example, when calling a
method, you could write:

file.insert(at: {line: 1, column: 10}, text: "This is new text");

At and Text are parameter names. When calling a built-in function such as
dialog(), you can not write:

result = dialog(message: "This is my message", buttons: 2)

You have to use:

92 • Reference Qedit Scripting Language User Manual

result = dialog("This is my message, 2);

Character()
This function allows you to get the character corresponding to a numeric value. The
value is taken from the Windows code representation.

tabCharacter = character(9);
line = tabCharacter + "This line starts with a tab";
file.insert(line);

Code()
If you need to see what is the numeric equivalent of a character, use the Code()
function. This is always the numeric equivalent in the Windows character set.

firstCharacter = line[1];
thisCharacter = code(firstCharacter);
result = dialog("The numeric value is:" + string(thisCharacter));

Dialog()
The dialog function allows you to perform simple interaction with the user. You can
display a message and request some information from the user. You must provide a
variable to receive the result. The Dialog() function calls can have up to 3
parameters:

• Message text: enter the text you want to display in the message dialog box.

• Number of buttons: the default is to display only the OK button. Enter a
value greater than 0 to get the OK and Cancel buttons.

• Default answer: if you wish to prompt the user for some information, specify
something as the third parameter. This parameter then appears as the default
value.

If you specified only the first or second parameters, the returned value is a number
representing the button clicked by the user. If the user chose the OK button, the
value is 1. If the user chose the Cancel button, the value is 2.

If you prompted the user for something, the function returns a list which includes the
button (Button) and the user input (EnteredText). If the user clicked the Cancel
button, the default value is returned.

To display a message, simply use:

result = dialog("This is my message!");

To display a message with both buttons and a text box with a default value, use:

result = dialog("What is your name?", 1, "John Doe");
if result.button = 1 then -- OK button used

userName = result.enteredText;
else

userName = "NO ENTRY"; -- User clicked on Cancel
endif

See "Interactive Debugging" on page 58 for details on how to use the Dialog()
function.

Qedit Scripting Language User Manual Reference • 93

Downshift()
This function changes all uppercase characters in a string to the equivalent lowercase
characters. Qedit takes into account the PC's local configuration and handles
extended characters such as accents in French.

myString = "AbCdE";
lowerMyString = downshift(myString); -- returns "abcde"

Exists()
This function tells you if a variable exists or not. This function can not be used to
check for the existence of a file.

if exists(myVar) then
result = dialog("The variable myVar exists");

else
result = dialog("The variable myVar does not exist!");

endif

Integer()
Numeric variables are typically stored as 64-bit IEEE floating point values. If you
need to get at the integer portion of these values, you can convert them to a whole
number using this function. This is actually a type coercion operation. The new
variable is of Integer type, not float. Also note that the integer part is not rounded
during this operation i.e. 123.999 becomes 123.

myNumber = 123.456789;
myInteger = integer(myNumber);

Length()
The Length() function returns the number of characters in a string or the number
of elements in a record. This function can not be used on other data types such file
objects.

myName = "John Doe";
lengthMyName = length(myName); -- returns 8

myList = { 1, 3, 5, 7, 9 };
lengthMyList = length(myList); -- returns 5

LTrim()
This function removes all leading spaces from a string. See also "RTrim()" on page
94 and "Trim()" on page 94.

strvar = " abc ";
writelog(trim(str)); -- returns "abc "

Num()
In most cases, Qedit converts string variables to numbers whenever appropriate.
There might be times when this does not happen. In these situations, you can use the
Num() function to explicitly convert a string to a number. This is a type coercion
operation.

94 • Reference Qedit Scripting Language User Manual

myString = "123";
myNumber = num(myString) * 1000;

If the string starts with a numeric digit but contains invalid digits after that e.g.
123abc456, the Num() function converts as many characters as it can. With this
sample value, myNumber would contain 123. If the string starts with a non-
numeric digit, an error is returned.

Pos()
This function returns the position of string or value within a character string or a
record.

position = pos("Quick brown fox", "Quick") -- Returns 1
position = pos("Quick brown fox", "fox") -- returns 13
position = pos({"Quick", "brown", "fox"} , "fox") -- returns 3
position = pos({2, 3, 4} , 5) -- returns 0

RTrim()
This function removes all trailing spaces from a string. See also "LTrim()" on page
93 and "Trim()" on page 94.

strvar = " abc ";
writelog(rtrim(str)); -- returns " abc"

String()
Some methods and functions such as dialog() require a string variable to operate
on. Use the String() function to convert variables of any other type. This is a
type coercion operation. The String() function can also take objects as a
parameter. This is sometimes useful when debugging a script.

myNumber = 123;
result = dialog("This is the value of myNumber: " + string(myNumber));

Trim()
This function removes all leading and trailing spaces from a string. See also
"LTrim()" on page 93 and "RTrim()" on page 94.

strvar = " abc ";
writelog(trim(str)); -- returns "abc"

Typeof()
If you need to determine the data type of a variable, you can use the Typeof()
function. It returns a number corresponding to the various types supported in Qedit.
To make it easier to identify each type, Qedit provides application constants . You
can use the application constants or the numeric representation interchangeably in
QSL statements. See "Application Constants" on page 101.

Qedit Scripting Language User Manual Reference • 95

if typeof(myVar) = qedit.typeundefined then -- 0
writelog("The variable MyVar has an undefined type");

else
if typeof(myVar) <> 3 then -- qedit.typestring

writelog("MyVar is a string:" + myVar);
else

writelog("Myvar is not a string:" + string(myVar));

Upshift()
This function changes all lowercase characters in a string to the equivalent uppercase
characters. Qedit takes into account the PC's local configuration and handles
extended characters such as accents in French.

myString = "AbCdE";
upperMyString = upshift(myString); -- returns "ABCDE"

Writelog()
This function sends messages to the log window of the Script control dialog box.
You can pass any kind of parameter. Writelog() converts everything to a string
before sending it to the control panel.

writelog("Script XYZ is starting");
-- Other statements to execute
writelog("Script XYZ has terminated");

Built-in Arithmetic Functions
Qedit offers a number of built-in functions to perform arithmetic operations.

** (exponentiation)
This function works like an arithmetic operator. It raises the value on the left to the
power of the value on right.

float = 2.0; -- raise 2 to the power 16
result = dialog("** = " + string(float ** 16)); -- returns 65536

Abs()
This function returns the absolute value of the parameter. If the parameter value is
positive, nothing changes. If the value is negative, the value becomes positive.

float = -1.0;
result = dialog("abs = " + string(abs(float))); -- returns 1

Acos()
This function calculates the arccosine value of the parameter.

float = 0.12;
result = dialog("acos = " + string(acos(float))); -- returns 1.45051

Asin()
This function calculates the arcsine value of the parameter.

96 • Reference Qedit Scripting Language User Manual

float = 0.12;
result = dialog("asin = " + string(asin(float))); -- returns 0.12029

Atan()
This function calculates the arctangent value of the parameter. Both single and
double argument forms are supported.

float = 0.12;
result = dialog("atan(one argument) = " + string(atan(float)));

-- returns 0.119429
result = dialog("atan(two arguments) = " + string(atan(float, 5.0)));

-- returns 0.0239954

Ceil()
This function finds the smallest integer that is greater than or equal to the parameter.
Note, this is not the same as rounding up.

float = 1.1;
result = dialog("ceil = " + string(ceil(float))); -- returns 2
float = -1.1;
result = dialog("ceil = " + string(ceil(float))); -- returns -1

Cos()
This function calculates the cosine value of the parameter.

float = 12.0;
result = dialog("cos = " + string(cos(float))); -- returns 0.843854

Floor()
This function returns the largest integer value that is less than or equal to the
parameter. This is the same as truncate in other programming languages.

float = 1.6;
result = dialog("floor = " + string(floor(float))); -- displays 1
float = -1.6;
result = dialog("floor = " + string(floor(float))); -- displays -2

Fp()
This function returns the fractional portion of the parameter. The fraction value is
stored in a new variable of type float.

float = 1.6;
result = dialog("fp = " + string(fp(float))); -- returns 0.6

Integer()
This function returns the integer portion of the parameter. This is a type coercion
operation so the value is stored in a new variable of type integer.

Qedit Scripting Language User Manual Reference • 97

float = 1.6;
result = dialog("integer = " + string(integer(float))); -- returns 1

Ip()
This function returns the integer portion of the parameter. The integer value is stored
in a new variable of type float.

float = 1.6;
result = dialog("ip = " + string(ip(float))); -- returns 1

Ln()
This function calculates the natural logarithm value of the parameter.

float = 180.0;
result = dialog("ln = " + string(ln(float))); -- returns 5.19296

Log()
This function calculates the logarithm value of the parameter.

float = 100.0;
result = dialog("log = " + string(log(float))); -- returns 2

Mod()
This function needs 2 parameters. It divides the first parameter by the second and
returns the remainder.

float = 20.0;
result = dialog("mod = " + string(mod(float,3))); -- returns 2

Randseed() and Rand()
These functions are used to generate random numbers. Random values are between 0
and 32,767. randseed() can be used first to seed the random number generator.
The function also returns the first random number.

Subsequently, you can call the rand() function to get the next random number.

float = randseed(123);
result = dialog("randseed(123) = " + string(float)); -- returns 440
result = dialog("rand() = " + string(rand())); -- returns 19053

If you call randseed() with the same value, you will repeatedly get the same
sequence of random numbers. If you do not call randseed(), the seed itself will
be random. This causes the random sequence from rand() to be different every
time.

Sin()
This function calculates the sine value of the parameter.

98 • Reference Qedit Scripting Language User Manual

float = 12.0;
result = dialog("sin = " + string(sin(float))); -- returns -0.536573

Sqrt()
This function calculates the square root of the parameter.

float = 144.0;
result = dialog("sqrt = " + string(sqrt(float))); -- returns 12

Tan()
This function calculates the tangent value of the parameter.

float = 12.0;
result = dialog("tan = " + string(tan(float))); -- returns -0.63586

Qedit Scripting Language User Manual Objects, Methods and Properties • 99

Objects, Methods and Properties

Overview
Most of the things you manipulate with QSL are "objects". An object is a special
type of variable that you normally must create in your script. There is only one
Application object called qedit, which is created automatically for you. For
example, a Document (a.k.a. File) is an object. You create a new document object in
QSL using Newfile() or Open(). These return an object that you store into a
variable.

fileA = newfile();

Even though an object is an internal structure of QSL, you can convert an object to
readable characters with the string() built-in function and display it with the
writelog() or dialog()functions.

fileC = open("c:\autoexec.bat");
result = dialog(string(fileC));

-- displays <Object: File c:\autoexec.bat>

What Are Properties?
Objects have Properties that can be examined such as the ShowInvisibles or
Linecount property. You access a property or method of the object by qualifying
the name with a period "." followed by the property/method name.

Some properties such as Connection.Hostcwd are read-only but others such as
File.ShowInvisibles may be set also.

fileA = newfile();
fileA.Insert("First line of text");
fileA.ShowInvisibles = true; -- Display Tab, etc on screen

What Are Methods?
The things you can do to and with the fileA object, such as Insert() text, are
called Methods.

Typically, a method is followed by a parameter list enclosed in opening and closing
parentheses. Some methods do not have parameters. In this case, the parentheses
must be specified but do not contain anything as in:

100 • Objects, Methods and Properties Qedit Scripting Language User Manual

file.cut();

Other methods accept one or more parameter values within the parentheses.
Parameters are passed by value. This means that the content of the original variable
can not be changed. Most methods return a value using the assignment operator. The
type of the return value is different for each method. Some returns an object, some
return a record and others simple variables.

Parameters can be passed by position or by name. You can not mix these options on
the same call. That is, if you want to use positional parameters, you cannot have
named parameters. If you use named parameters, you can not use positional
parameters.

Positional parameter values are matched from left to right with the names in the
method declaration. For example, the Open() application method expects the
following parameters:

• Filename (string)

• Connection (string)

• ReadOnly (Boolean)

• OpenACopy (Boolean)

• ForceUnnumbered (Boolean)

This means you could call Open() with three parameters: "program1.src" as
Filename, "Production MPE" as Connection and True as ReadOnly. This call
opens the specified file with Read-only access on the specified connection.

mpefile = open("program1.src", "Production MPE", True);

If you use positional parameters, you can not omit parameters in the middle of the
parameter list. However, you can omit parameters at the end of the list. Here are
some sample calls:

localfile = open("c:\personal\diary.txt");
-- Valid. All other parameters get default values

mpefile = open("program1.src", "Production MPE");
-- Valid. All other parameters get default values

localfile = open("c:\personal\diary.txt", , True);
-- Invalid. Connection parameter must be specified

If you want get around these restrictions, you can use a named parameter list. You
would qualify each value with the name of the corresponding parameter. This feature
allows you to omit parameter values anywhere in the list. It also allows you to
specify the parameters in any order. Here are some examples:

localfile = open(Filename: "c:\personal\diary.txt");
-- Open a local file with default access options

mpefile = open(connection: "Production MPE, readonly: true,
Filename: "program1.src");

-- Open a host file as readonly. Parameters in different order

fileB = open(filename: "c:\personal\diary.txt", readonly: true);
-- fileB is a Document object

writelog("lines=" + string(fileB.linecount))); -- LineCount property
fileB.close(); -- Document method

In the last example, the open() application method is called with 2 parameters:
Filename and Readonly. You could reverse the parameters' order without
affecting the result.

Qedit Scripting Language User Manual Objects, Methods and Properties • 101

The method creates a document object called fileB. The LineCount property for
fileB is accessed in the writelog() function. Finally, the document is closed
using the close() document method.

Making copies of an object?
If you assign an object variable to another variable, you do not have two independent
objects. You still have one object, but with two names for it. For example, if you run
this script you will see that timestamp and anotherdate both get added to,
since there really is only one object:

timestamp = datetime();

anotherdate = timestamp; -- aha, is this the same object??
anotherdate.adddays(1); -- increments both names
if (timestamp.daysbetween(anotherdate)) = 0

result = dialog("These are still the same date!");
endif

Application Object
QSL has a single application object, qedit, but this object has seven methods and
many properties. The properties record the state of the current execution of Qedit and
the configuration options that have been enabled. The methods create and find
objects of the other types. For example, qedit.activefile is the document
object that is currently open and active, if any.

To avoid any confusion with ordinary variables, you should always qualify
application constants and properties with the qedit object name.

if currentFile = qedit.typeundefined then -- Constant
currentFile = qedit.activefile; -- Property

endif

Application Constants
Remember to qualify them
with the "qedit" object name.

Application constants are read-only properties that always return the same value.
They are used for defining values for specific application properties and results.

Data Type Application constants
The following constants are used to describe variable data types. These can be used
to test the results of a call to the typeof() function.

Name Value Compare to
qedit.typeundefined 0 Result of TypeOf()

qedit.typeinteger 1 Result of TypeOf()

qedit.typefloat 2 Result of TypeOf()

qedit.typestring 3 Result of TypeOf()

qedit.typerecord 6 Result of TypeOf()

qedit.typeobject 10 Result of TypeOf()

102 • Objects, Methods and Properties Qedit Scripting Language User Manual

File Language Application Constants
Another set of application constants is defined for the languages supported in Qedit.
These constants can be used to check the value of the Language document property.
These constants are:

Name Language Code Description
QeditLanguageSPL 0 HP's Systems Programming Language

QeditLanguageFTN 1 Fortran

QeditLanguageCOBOL 2 Cobol

QeditLanguageCOBOLX 4 Cobol with comments

QeditLanguageJOB 5 Job stream

QeditLanguageRPG 6 RPG

QeditLanguageTEXT 7 Free-format text up to 256 bytes

QeditLanguagePASCAL 8 Pascal

QeditLanguageDATA 9 Free-format text up to 8172 bytes

QeditLanguageCC 10 C language

QeditLanguageCPP 11 C++ language

QeditLanguagePH 12 Powerhouse

QeditLanguagePASCX 13 Pascal with long lines

QeditLanguageCOBFREE 14 Free-format Cobol

Boolean Application Constants
Similarly, Qedit provides 2 named constants to be used in boolean comparisons:
True and False. Reference to these constants do not require the Qedit prefix.

SearchReferenced Application Constants
The FindAll() document method allows you to search for string in a file and,
optionally, other files referenced in it. The main file can reference Include files, Use
files or COBOL Copy libraries. To specify which related files you want to search,
you set the SearchReferenced parameter of the document method. Qedit provides
application constants to make it easier to set the parameter value.

Name Value Search in
SearchFile 0 Current file only

SearchInclude 1 Current file and Include files

SearchUse 2 Current file and Use files

SearchCopylib 3 Current file and COBOL
Copy libraries

Line Termination Application Constants
On local files, you can retrieve or set information about the line termination
characters used for that particular file. This information is an integer value and can
be referenced using the following constant names:

Qedit Scripting Language User Manual Objects, Methods and Properties • 103

Name Value File Format
LineTerminationUnix 0 Unix

LineTerminationDos 1 DOS

LineTerminationMacintosh 2 Macintosh

Application Properties
Below is list of all application properties. They are associated with the qedit object
and should always be qualified with the object name.

if currentFile = qedit.typeundefined then -- Constant
currentFile = qedit.activefile; -- Property

endif

The QSL code below stores each application property value into its own variable. To
see what the property looks like, so you can test for it in your script, you convert it
into a string and display it with dialog() or writelog().

Most properties correspond directly to options on dialog boxes or menu commands.
Here is a summary:

Property Option / Command Found In
Autopush Automatically push caret

location on search
Searching tab of Qedit
Preferences

AutoWorkfilePost Automatically post Qedit
workfiles

General tab of Qedit
Preferences

CaretAllowedOutsideText Caret allowed in undefined
areas

General tab of Qedit
Preferences

CheckServerTimestamps Compare timestamps before
overwriting on server

General tab of Qedit
Preferences

LiveScrolling Use live scrolling for server
files

General tab of Qedit
Preferences

MPEServerName MPE Server Name Configure Server Settings

Overwrite Insert / overwrite mode Insert key

ReleaseOnClose Close connections with no
open files

General tab of Qedit
Preferences

ShowSCP Control panel command Script menu

UseRulerBar Open files with a ruler bar Defaults tab of Qedit
Preferences

Some properties are initialized when Qedit starts up but retain their values
throughout the edit session. These properties are:

• CommandLine: returns the command line used to invoke Qedit. For example,
if you enter this at the DOS prompt:

c:\>qwin32.exe -r myScript.qsl

the CommandLine propery contains:
-r myScript.qsl

• VersionNumber: returns Qedit's current version number.

Other properties are changing dynamically as you work in Qedit. For example:

104 • Objects, Methods and Properties Qedit Scripting Language User Manual

• Activefile: returns the file object of the currently active document. This is a
standard QSL file object.

• File: returns a list of all currently opened files. These are fully-qualified
filenames but the connection name is not included. You can also use Files to
get the same list.

• LocalCWD: when used on the right side of an assignment, the local current
working directory is returned. If you use it on the left side of an assignment,
Qedit saves the new value and actually changes the CWD to the new location.

• OpenConnections: returns a list of all currently opened connections.

If you wish to display the current values for all the application properties, you can
use the following script:

-- script to display all Application Properties

activefile = qedit.activefile; -- object
autopush = qedit.autopush; -- boolean
autoworkfilepost = qedit.autoworkfilepost; -- boolean
caretallowedoutsidetext = qedit.caretallowedoutsidetext; -- boolean
checkservertimestamps = qedit.checkservertimestamps; -- boolean
commandline = qedit.commandline; -- string readonly
file = qedit.file; -- same as files
files = qedit.files; -- list readonly
livescrolling = qedit.livescrolling; -- boolean
localcwd = qedit.localcwd; -- string
mpeservername = qedit.mpeservername; -- string readonly
openconnections = qedit.openconnections; -- list readonly
overwrite = qedit.overwrite; -- boolean
releaseonclose = qedit.releaseonclose; -- boolean
showscp = qedit.showscp; -- boolean
userulerbar = qedit.userulerbar; -- boolean
versionnumber = qedit.versionnumber -- string readonly

-- convert each property to a string and display it

writelog("activefile = " + string(activefile));
writelog("autopush = " + string(autopush));
writelog("autoworkfilepost = " + string(autoworkfilepost));
writelog("caretallowedoutsidetext = " +

string(caretallowedoutsidetext));
writelog("checkservertimestamps = " + string(checkservertimestamps));
writelog("commandline = " + string(commandline));
writelog("file = " + string(file));
writelog("files = " + string(files));
writelog("livescrolling = " + string(livescrolling));
writelog("localcwd = " + string(localcwd));
writelog("mpeservername = " + string(mpeservername));
writelog("openconnections = " + string(openconnections));
writelog("overwrite = " + string(overwrite));
writelog("releaseonclose = " + string(releaseonclose));
writelog("showscp = " + string(showscp));
writelog("userulerbar = " + string(userulerbar));
writelog("versionnumber = " + string(versionnumber));

If you execute the script above in an unnamed text window with one other host file
open, the log window of Script Control dialog box should contain something like
this:

Qedit Scripting Language User Manual Objects, Methods and Properties • 105

activefile = <Object: File >
autopush = 0
autoworkfilepost = 1
caretallowedoutsidetext = 0
checkservertimestamps = 1
commandline = -r myScript.qsl
file =

{<Object: File /home/billsmith/diary.txt>, <Object: File >}
files =

{<Object: File /home/billsmith/diary.txt>, <Object: File >}
livescrolling = 0
localcwd = C:\personal
mpeservername = qedit.pub.robelle
openconnections = {<Object: Connection uxserver>}
overwrite = 0
releaseonclose = 0
showscp = 0
userulerbar = 0
versionnumber = 4.8.04

This result shows that the File and Files properties are identical.

Application Methods
Because there is only one application object instance, it is not necessary to always
qualify application methods as in qedit.open(). You can simply use open().
You can tell if something is an application method by putting an optional 'qedit.' in
front of the invocation. If that gives an error, you are working with a built-in function
and not an application method. Here are all the Qedit application methods:

DateTime() HostCommandAbort()

DeleteConnectionTemplate() HostCommandStatus()

DOSCommand() LoadScript()

Exit() NewConnectionTemplate()

FindConnectionTemplate() NewFile()

FindOpenFile() Open()

GetConnectionTemplateIterator() OpenConnection()

GetDirectoryIterator() ShellCommand()

HostCommand() UnloadScript()

DateTime() Application Method
The method does not require any parameter and returns an object.

This method creates a DateTime object and initializes it with the current date and
time. This sample script inserts the timestamp in the active file.

106 • Objects, Methods and Properties Qedit Scripting Language User Manual

file = qedit.activefile; -- we need an object to insert into
if typeof(file) = qedit.typeundefined then

result = dialog("You must have a file open");
stop; -- terminates the script, but not Qedit

else
timestamp = datetime(); -- Create a DateTime object
timestamp = timestamp.fmtshortdatetime();

-- a method, not a function
file.insert(timestamp); -- insert the formatted timestamp

endif

DeleteConnectionTemplate() Application Method
This method has only one parameter:

• ConnectionTemplate (any)

The return value is a boolean.

This method removes the connection template specified in the
ConnectionTemplate parameter. The parameter can be a string containing the
name of an existing connection. The name must match exactly but is not case-
sensitive. This means that "PROD UX" and "prod ux" are equivalent and would
match the same connection. The parameter can also be a ConnectionTemplate object
found with the FindConnectionTemplate() application method, selected
from a list created with the GetConnectionTemplateIterator()
application method or created with the NewConnectionTemplate() application
method.

If the connection template is successfully removed, the method returns true. If the
operation fails, the method returns false. This would happen if the connection does
not exist.

result = deleteconnectiontemplate("Prod UX");
if result then

rd = dialog("Connection has been removed");
else

rd = dialog("Connection has NOT been removed");
endif

connobject = findconnectiontemplate("Developer UX");
result = deleteconnectiontemplate(connobject);
if result then

rd = dialog("Connection has been removed");
else

rd = dialog("Connection has NOT been removed");
endif

DOSCommand() Application Method
Here are the positional parameters:

• CommandName (string)

• Arguments (string)

• Wait (boolean)

The return value is a record.

If you wish to execute commands on a host, check out the HostCommand()
application method. If you wish to execute other programs using program names or
associated files on your PC, check out the ShellCommand() application method.

This method allows the execution of commands in the Windows 95/NT shell. The
difference is that DosCommand() can be an asynchronous or synchronous

Qedit Scripting Language User Manual Objects, Methods and Properties • 107

operation as specified by the Wait parameter. Synchronous mode is the default. This
means execution of the QSL script suspends until the DOS command has terminated.
Asynchronous mode means the command is launched and executes on a different
thread. Qedit does not wait for the command to complete and continues the script
execution immediately.

The CommandName parameter must be a string and should contain an executable
statement. This could be the name of an executable file such as a program file
(.exe) or batch file (.bat).

The Arguments parameter is used to specify command arguments required by the
program to execute.

The Wait parameter indicates whether the DOS command should execute
asynchronously or synchronously. The parameter is optional and the default is True.

If the parameter is True, the command execution is synchronous. This means that
the script is suspended until Qedit receives a signal from the DOS shell.

The DOSCommand() method returns a record to indicate the operation's success or
failure. The record contains only one element:

• ExitCode (integer)

ExitCode contains 0 if the execution was successful. It contains a value other than 0
if the command itself reported a problem.

If the Wait parameter is set to False, the execution is asynchronous. This means
Qedit immediately resumes execution of the script and does not wait for a response.
Since the DOSCommand() method does not wait for the task to complete, it's
unable to determine the outcome. In this case, it always returns a record where
ExitCode is set to 0.

doscommand(commandname: "c:\robelle\bin\extractinfo.exe",
arguments: "c:\personal\diary.txt");

-- Executes the ExtractInfo program on the diary file
-- Uses synchronous mode i.e. QSL waits for it to complete

doscommand(startname: "c:\robelle\bin\extractinfo.exe",
arguments: "c:\personal\otherdiary.txt",
wait: false);

-- Executes the ExtractInfo program on another diary file
-- Uses asynchronous mode i.e. control returns to QSL immediately

Exit() Application Method
The method does not require any parameter and does not return anything.

This method forces the termination of Qedit. Qedit then goes through its regular
process as if you had selected the Exit command from the File menu.

FindConnectionTemplate() Application Method
This method has only one parameter:

• Name (string)

This method returns a ConnectionTemplate object corresponding to the name
specified as the parameter value. If the connection name does not exist, the result
variable is of undefined.

108 • Objects, Methods and Properties Qedit Scripting Language User Manual

connobject = findconnectiontemplate("Developer UX");
if typeof(connobject) = qedit.typeundefined then

writelog("Connection does not exist!");
else

writelog(connobject.Name); -- Display the connection name
writelog(connobject.HostName); -- Display the host name

endif

FindOpenFile() Application Method
The positional parameters are:

• Pathname (string)

• Connection (any type)

• Matches (string)

The return value is a record.

This method returns a list of files that match some search criteria. It searches through
all of the open files and returns a file object if it finds a match. Qedit uses slightly
different rules when searching on filenames and pathnames. The rules are:

• local files: caseless match

• MPE/iX host files: caseless match

• HP-UX host files: case-sensitive match

Two forms of comparison are done. If you specify a Pathname, the full pathname
must match. If you specify a Matches parameter, then there will be a match if any
substring of the full pathname matches the fragment that you specify using the case
comparison rules form above.

The meaning of each parameter is:

• Connection: Search for files on the specified Connection.

• Matches: Search for this string anywhere in the pathname of a file.

• Pathname: Fully-qualified file pathname, must match exactly.

The Findopenfile() method always returns a list, even if there is only a single
match. But it can return more than one file object. If you specify the Connection
parameter only, QSL returns the names of all the files opened on the connection. If
you specify the Matches parameter, any pathname that match what you specify
qualifies the file and return it as part of the object list.

If you enter a string without a parameter name, Pathname is assumed.

 Here is an example for some of the common ways of using findopenfile():

Qedit Scripting Language User Manual Objects, Methods and Properties • 109

-- The first three examples show full pathname searching:

-- Pathname is assumed.
file01 = findopenfile("c:\Personal\Diary.txt");
if file01 = {} -- No match. Not already open

file01 = open("c:\Personal\Diary.txt");
endif
result = dialog("Full match: " + string(file01));

-- MPE/iX file:
file02 = findopenfile(connection:"mpe03", pathname:"prog1.src.dev");
if file02 = {} -- No match. Not already open
 file02 = open(connection:"mpe03", filename:"prog1.src.dev");
endif
result = dialog("Full match: " + string(file02));

-- HP-UX file:
file03 = findopenfile(connection:"hpux02",

pathname:"/home/dev/src/test.c");
if file03 = {} -- No match. Not already open
 file03 = open(connection:"hpux02", filename: "test.c");
endif
result = dialog("Full match: " + string(file03));

-- The next three examples show substring matching for each file:
file04 = findopenfile(matches: "Diary");
result = dialog("Partial match: " + string(file04));

-- MPE/iX file:
file05 = findopenfile(matches:"prog1.src");
result = dialog("Partial match: " + string(file05));

-- HP-UX file:
file06 = findopenfile(matches: "test.c");
result = dialog("Partial match: " + string(file06));

-- Multiple files on a connection:
file07 = open(connection:"mpe03", filename:"prog2");
file08 = findopenfile(connection:"mpe03");
result = dialog("Connection mpe03: " + string(file08));

-- Displays prog1 and prog2 file objects

-- Multiple matches:
file09 = findopenfile(matches: "src");
result = dialog("Matches src: " + string(file09));

GetConnectionTemplateIterator() Application Method
This method does not have any parameter.

It returns an iterator object which contains ConnectionTemplate objects for existing
connections.

conniterator = getconnectiontemplateiterator();
repeat for connitem in conniterator

writelog(connitem);
endrepeat

This script produces something like:

<Object: Connection template Prod UX>
<Object: Connection template Prod MPE>
<Object: Connection template Dev UX>
<Object: Connection template Dev MPE>

GetDirectoryIterator() Application Method
The positional parameters are:

110 • Objects, Methods and Properties Qedit Scripting Language User Manual

• Directory (string)

The return value is an iterator object.

For examples, see "Navigating Through Directories" on page 41.

This application method only works with local directories. It is also available as a
connection method to handle host directories.

This method returns an directory iterator object which contains information about all
the files and subdirectories in the specified directory. Each entry is a record with a
number of elements describing the file or subdirectory. For a detailed description of
each element, see "Local Directory Iterator" on page 160. For local directories, the
elements are:

• Name (string)

• Path (string)

• OpenName (string)

• Size (integer)

• ModificationTimestamp (date object)

• CreationTimestamp (date object)

• AccessTimestamp (date object)

• CanonicalType (string)

Individual entries can be accessed using a REPEAT statement.

localdir = getdirectoryiterator("c:\personal");

subdircount = 0;
filecount = 0;
repeat for direntry in localdir

if direntry.canonicaltype = "directory" then
subdircount = subdircount + 1;

else
filecount = filecount + 1;

endif
endrepeat

writelog("Number of subdirectories=" + string(subdircount));
writelog("Number of files=" + string(filecount));

The meaning of each parameter is:

• Directory: Retrieve the list of files and subdirectories stored at that location.

The GetDirectoryIterator() method itself is not recursive. This means that
it returns information on subdirectories in the requested directory but it does not go
down the subdirectories. If you need to see what is stored at other levels in the
directory tree, the script has to do it.

HostCommand() Application Method
Here are the positional parameters:

• Connection (any type)

• Command (any type)

• Output (object)

• Wait (boolean)

Qedit Scripting Language User Manual Objects, Methods and Properties • 111

The return value is a record.

For some examples, see "Executing Host Commands" on page 45. If you wish to
execute a command on the PC, check out the ShellCommand() or the
DOSCommand() application methods.

This method requests that the server associated with the Connection executes the
commands specified in the Command parameter.

The Connection parameter is
mandatory.

The Connection parameter can be of any type. It can be a connection object
previously opened with a call to the OpenConnection() application method. It
can also be a string constant or variable containing an actual connection name. In
this case, the connection must already be opened.

The Command parameter can also be of any type. If it is a string, it should be a
single host command. If you wish to execute multiple commands, you can put them
in a record variable and use that variable as the parameter value.

The output file must be a
local file.

The Output parameter is optional. It is used to specify an alternate destination for
the command results. If specified, the Output parameter must be a file object i.e. the
file must be opened. With this option, the host command output is written to the file.

If the Output parameter is not specified, the results are returned in a record variable.
The structure of this record is determined by the Wait parameter.

The Wait parameter indicates whether the host command should execute
asynchronously or synchronously. The parameter is optional and the default is True.

If the parameter is True, host command execution is synchronous. This means that
the script is suspended until Qedit receives the output from the server. If the Output
parameter is not specified, the return variable is a record of 3 elements:

• ExitCode (integer)

• CommandOutput (record)

• JCW (integer)

ExitCode contains 0 if the execution was successful. It contains a value other than 0
if there has been a problem. CommandOutput is a record that contains all the lines
produced by the host command. Each element in the record represents one line of
output. JCW is an integer which represents the overall execution status. Check
"Checking Results" on page 46 for details on how to access and interpret these
elements.

If the Wait parameter is set to False, the execution is asynchronous. This means
Qedit immediately resumes execution of the script and does not wait for a response.
The HostCommand() method then returns a record with a single element in it:

• Running (boolean)

The element is typically initialized to 1. The script can check the host command
execution status using the HostCommandStatus() application method.

HostCommandAbort() Application Method
There is only one positional parameter:

• Wait (boolean)

The return value is a record.

This method is used to abort an asynchronous host command. The Wait parameter is
optional and the default is False.

112 • Objects, Methods and Properties Qedit Scripting Language User Manual

If the Wait parameter is True, HostCommandAbort() waits until the host
command completes. The return variable then contains:

• ExitCode (integer)

• CommandOutput (record)

• Running (boolean)

• Finished (boolean)

ExitCode contains 0 if the execution was successful. It contains a value other than 0
if there has been a problem. CommandOutput is a record that contains all the lines
produced by the host command up to the abort. Thus CommandOutput might not
contain everything sent during a normal execution. Each element in the record
represents one line of output. Running and Finished both contain True.

If the Wait parameter is False or is omitted, HostCommandAbort() sends the
abort request to the host and returns control to the script immediately. The return
variable is a record containing these elements:

• Running (boolean)

• Finished (boolean)

• ProgressTime (integer)

• Step (string)

• ProcessID (string)

Running is set to True to indicate that command execution has started. Finished
is set to True to indicate the command has finished executing. In reality, the host
process might still be executing but Qedit simply discards any output received from
that point.

ProgressTime indicates the CPU time used since the start of the command. Step
contains the last command encountered in a multi-command record sent to
HostCommand(). This actually indicates which command is actually executing.
ProcessID is the Command Interpreter (CI) process id or shell process id currently
used to execute the commands.

HostCommandStatus() Application Method
There is only one positional parameter:

• Wait (boolean)

The return value is a record.

For examples, see "Executing Host Commands" on page 45.

This method is used to check the status of an asynchronous host command. The Wait
parameter is optional and the default is False.

If no host command is in progress, the return variable is a record with only one
element set to False:

• Running (boolean)

If a host command was in progress and is now finished, the return variable is a
record which contains:

• ExitCode (integer)

• CommandOutput (record)

Qedit Scripting Language User Manual Objects, Methods and Properties • 113

• Running (boolean)

• Finished (boolean)

ExitCode contains 0 if the execution was successful. It contains a value other than 0
if there has been a problem. CommandOutput is a record that contains all the lines
produced by the host command. Each element in the record represents one line of
output. Running and Finished both contain True.

If a host command is in progress and the Wait parameter is True,
HostCommandStatus() waits until the host command completes. The result has
the same record structure: ExitCode, CommandOutput, Running and
Finished.

If a host command is in progress and the Wait parameter is False or is omitted, the
return variable is a record containing these elements:

• Running (boolean)

• Finished (boolean)

• ProgressTime (integer)

• Step (string)

• ProcessID (string)

Running is set to True to indicate that command execution has started. Finished
is set to False to indicate the command is still executing. ProgressTime indicates
the CPU time used since the start of the command. Step contains the last command
encountered in a multi-command record sent to HostCommand(). This actually
indicates which command is actually executing. ProcessID is the Command
Interpreter (CI) process id on MPE or shell process id on UNIX currently used to
execute the commands.

Loadscript() Application Method
The positional parameters are:

• Filename (string)

• Connection (any type)

The return value is a string.

This method dynamically loads a QSL file into your script environment. The script is
reloaded each time Loadscript() is called. If the script contains On command
statements, the command names are added to the Script menu. If the script does not
contain any On command but contains a mainline, the name of the script is added to
the menu. If the script does not contain On command statements nor a mainline, the
Script menu is unchanged.

You can check the presence of the loaded script using the Manage scripts dialog
box. There is no error message if the script is already loaded. Instead, Qedit replaces
the currently loaded script with the script code again. This is handy when developing
an external script. You can make changes to the external script and test them simply
by running another script calling this built-in function. Once loaded, the script can be
accessed via the Script menu (if it contains On Command statements or has a
mainline) or via an external reference.

You can assign the result of a call to Loadscript() to a variable. If the call is
successful, it returns the name of the script and the resulting variable is created as a
string type.

114 • Objects, Methods and Properties Qedit Scripting Language User Manual

loadedscript = loadscript(connection: "Production HPUX",
filename: "/opt/robelle/scripts/globals.qsl");

NewConnectionTemplate() Application Method
The positional parameters are:

• Name (string)

• Host (string)

• LogonInformation (record)

• ColorScheme (string)

• Autologon (boolean)

• FromTemplate (object)

The method returns a ConnectionTemplate object.

This method creates a new connection based on the information in the parameters.
The Name parameter is required in all cases. The name of the new connection must
not exist in the connection template file.

If the FromTemplate parameter is specified, it has to be a ConnectionTemplate
object created with the FindConnectionTemplate() application method or
extracted from a ConnectionTemplate iterator object created with the
GetConnectionTemplateIterator() application method. When used, the
new connection acquires all attributes from the selected ConnectionTemplate object.

If the FromTemplate parameter is omitted, the Host and LogonInformation
parameters are required. The Host paramater contains the hostname or IP address of
the host. The LogonInformation parameter is a record and all elements in it are
required. See the "ConnectionTemplate Properties" on page 163 for details on the
LogonInformation record.

The ColorScheme and Autologon parameters are optional.

connname="New UX"; -- Create a new connection from scratch
hostname="Prod UX";
logoninfo={};
logoninfo.ConnectionType = "unix";
logoninfo.Username = "pgmr";
logoninfo.Password = "hispass";
logoninfo.InitialDirectory = "/home/pgmr";
newconn = newconnectiontemplate(Name: connname,

Host: hostname,
LogonInformation: logoninfo);

findconn = findconnectiontemplate("Dev UX");
connname="Copy UX"; -- Create a connection based on an existing one
newconn = newconnectiontemplate(Name: connname,

FromTemplate: findconn);

Newfile() Application Method
The positional parameters are:

• Connection (string)

• Recordlength (number)

• QeditLanguage (number)

• Minimize (boolean)

Qedit Scripting Language User Manual Objects, Methods and Properties • 115

• DiscardOnClose (boolean)

The return value is an object.

For examples, see "Creating a File" on page 33.

This method creates a new host or local document and returns it as a document
object.

All parameters are optional. The meaning of each parameters is:

• Connection: Specifies the host connection as a string. Default is a local file,
which can also be specified explicitly as an empty string.

• QeditLanguage: Specifies what type of file you wish to create, selecting from
a list of "language codes".

• RecordLength: Specifies the maximum number of columns in a line for this
file.

• Minimize: A boolean value. True causes the file to be opened in a document
window minimized to an icon.

• DiscardOnClose: A boolean value. True means the file can be closed and its
contents automatically discarded. False is the default and forces Qedit to ask
for confirmation to discard when the file is closed.

The Connection parameter must contain the name of an existing connection. The
RecordLength can be any value between 1 and 8,172. QeditLanguage can take
any one of the values defined in the QeditLanguage application constants set.

Remember that RecordLength is tightly tied in with QeditLanguage. Currently,
QeditLanguage is only valid for host files.

Here is a fragment from a sample script which creates a new file on the same server
as the current file:

connectionname = qedit.activefile.connectionname;
duplicate = newfile(connection: connectionname);

It is important that you specify the desired destination connection when you create a
newfile() since there is no method to save an open file on a different connection
(although you can use the sample script "Copying Files Between Systems" on page
77 to copy a file).

Open() Application Method
The positional parameters are:

• Filename (string)

• Connection (string)

• ReadOnly (boolean)

• OpenACopy (boolean)

• ForceUnnumbered (boolean)

• Minimize (boolean)

• UpdateRecentFiles (boolean)

The return value is an object.

For examples, see "Opening a File" on page 34.

116 • Objects, Methods and Properties Qedit Scripting Language User Manual

This method opens a host or local document and returns a Document Object. The
cursor position or selection at the time of the last close is restored. If none, the cursor
is at the start of the file i.e. line 1, column 1.

The meaning of each parameter is:

• Connection: A string with the Connection name. If the parameter is omitted or
contains blanks, QSL assumes it is a local file.

• Filename: A string with the file name. This parameter is required.

• ForceUnnumbered: A Boolean. True means ignore sequence numbers in the
file.

• Minimize: A boolean value. True causes the file to be opened in a document
window minimized to an icon.

• OpenACopy: A Boolean value. True causes a copy to be made of an existing
Qedit workfile. You will need to do a SaveAs to give it a name if you want to
save it.

• ReadOnly: A Boolean value. True means you should not be allowed to
modify the file.

• UpdateRecentFiles: A Boolean value. False means the file will not be
inserted in the Recent Files list of the File menu.

If the Open() fails, the script normally prints an error message and stops. However,
you can use a Try-Recover block to handle errors in a more graceful way. Here is
a sample script showing various forms of the Open() method:

Qedit Scripting Language User Manual Objects, Methods and Properties • 117

-- Open a local file and detect errors:
try

file01 = open("c:\autoexec.bat");
recover

result = dialog("Sorry, could not open the autoexec file.");
stop;

endtry
file01.close();

-- Open a local file using a "named" filename parameter:
file02 = open(filename: "c:\autoexec.bat");
file02.close();

-- Open a local file as read-only:
file03 = open(filename: "c:\autoexec.bat", readonly: true);
file03.close();

-- Open a host file:
file04 = open(filename: "diary", connection:"mpe05");
file04.close();

-- Open a host file as read-only:
file05 = open(filename: "diary", connection:"mpe05", readonly: true);
file05.close();

-- Open a host file as openacopy:
file06 = open(filename: "diary", connection:"mpe05", openacopy: true);
file06.close();

-- Open a host file as forceunnumbered:
file07 = open(filename: "diary", connection: "mpe05",

forceunnumbered: true);
file07.close();

-- Open with all possible parameters:
file08 = open(filename: "k",

connection: "mpe05",
readonly: true,
openacopy: true,
forceunnumbered: true);

file08.close();

OpenConnection() Application Method
The method has only one positional parameter:

• Connection (string)

The return value is an object.

This method is used to establish a connection to a host. The connection name must
exist in the connection list. The method does not open any file but opens the
connection and validates all security settings.

The parameter must be a string and should contain the name of an existing
connection.

mpeconn = openconnection(connection: "Production MPE");

ShellCommand() Application Method
Here are the positional parameters:

• Startname (string)

• Arguments (string)

The return value is a boolean.

118 • Objects, Methods and Properties Qedit Scripting Language User Manual

If you wish to execute commands on a host, check out the HostCommand()
application method. If you wish to execute a local command in synchronous mode,
check the DOSCommand() application method.

This method allows the execution of commands in the Windows 95/NT shell. This is
an asynchronous operation. This means that the command is launched and executes
on a different thread. Qedit does not wait for the command to complete and
continues the script execution immediately.

The Startname parameter must be a string and should contain an executable
statement. This could be the name of a program file or a file with an associated
extension. For example, the extension .doc could be associated in Windows with
Microsoft Word. Passing a filename ending in .doc to the Shellcommand()
method would automatically bring up MS-Word.

The Arguments parameter is used to specify command arguments required by the
program to execute.

shellcommand(startname: "c:\robelle\bin\qwin32.exe",
arguments: "c:\personal\diary.txt"); -- Executes Qedit

shellcommand(startname: "http://www.abcwidget.com");
-- Connects to this URL in the default browser

UnloadScript() Application Method
The method has only one positional parameter:

• ScriptName (string)

The return value is boolean.

This method is used to remove a script from the script environment.

The parameter must be a string and should contain the name of a previously loaded
script.

UnloadScript(scriptname: loadedscript);

Document Objects
A Document is an instance of a file, either local or host-based, that is open in Qedit.
There are two application methods for creating a document object: Newfile() and
Open().

Document Constants
Currently, there are no document constants.

Document Properties
Qedit keeps tracks of many attributes and settings that relate to a specific document.
The document properties are:

• AutoIndent: If True, indicates that the auto-indent option is enabled. This is
equivalent to the Auto-indent option on the Options tab of the file
Properties dialog box.

• CacheMaxLines: Indicates the maximum number of lines that can be stored in
the cache.

Qedit Scripting Language User Manual Objects, Methods and Properties • 119

• Connection: If the active document is a host file, this property contains a
connection object. If the active document is a local file, the target variable is not
initialized. Check the status with the exists() function.

• ConnectionName: If the active document is a host file, this property contains
the connection name.

• ConvertTabsToSpaces: If True, indicates that tab characters are converted
to spaces when entering text in the file. This is equivalent to the Use spaces
for tabs option on the Options tab of the file Properties dialog box.

• DisplayDetabbedColumn: If True, indicates that the display detabbed
column option is enabled. This is equivalent to the Display detabbed
column option on the Options tab of the file Properties dialog box.

• FullFilename: This property contains the fully-qualified file name. It does not
include the connection name.

• IsNew: If True, indicates this is a new file that has not been named yet.

• IsModified: If True, indicates the file has been modified.

• IsOnHost: If True, indicates the file resides on a host.

• IsQedit: If the opened file is a Qedit workfile, this property is set to True.
Otherwise, it is set to False.

• IsReadOnly: If True, indicates that the file has been opened in read-only
mode.

• IsSaveable: If True, indicates the file can be saved. Typically, this is
applicable to host files. For example, it would be False for spoolfiles on MPE
hosts.

• KeepTrailingBlanks: If True, indicates that the option to preserve trailing
blanks is enabled. This is equivalent to the Preserve trailing blanks option
on the Options tab of the file Properties dialog box.

• LastFoundColumn: After a successful search, this property contains the
column number where the found string starts.

• LastFoundLength: After a successful search, this property contains the
number of characters in the found string.

• LastFoundLine: After a successful search, this property contains the line
number where the string has been found.

• LastSearchString: This property contains the last search string used in the
Find dialog box. The value is not changed by the Find() method i.e. it is not
the last string searched from within a script.

• LineCount: This is the number of lines currently in the file.

• LinesTruncated: Contains the number of lines that have been truncated during
the last Paste or Insert operation.

• LineTermination: On local files, indicates the type of line termination
character used. This is an integer value corresponding to UNIX format (0), DOS
format (1) or Macintosh format (2). For easy manipulation, see "Application
Constants" on page 101.

• OriginalCurrentLine: It contains the current line number at the time of the
last close on this file.

120 • Objects, Methods and Properties Qedit Scripting Language User Manual

• RecordLength: This is the maximum line length for this file. This is
equivalent to the Record Length option on the Options tab of the file
Properties dialog box.

• Selection: This is a record with information about the cursor. Looking at this
property, you can determine if the cursor is a simple caret, a regular selection or
a rectangular selection.

• ShowInvisibles: If set to True, displays invisible characters in the document.

• Title: This is a string that contains the document title as it appears on the title
bar.

• WorkfileName: If the host file has been copied into a Qedit workfile, this
property contains the name of that workfile. If no workfile is used, this is blank.

Here is a script that writes all the document properties to the log window:

Qedit Scripting Language User Manual Objects, Methods and Properties • 121

-- show all document properties
file = open("c:\autoexec.bat");

fullfilename = file.fullfilename; -- string
linecount = file.linecount; -- integer
isqedit = file.isqedit; -- boolean
workfilename = file.workfilename; -- string
recordlength = file.recordlength; -- integer
isreadonly = file.isreadonly; -- boolean
autoindent = file.autoindent; -- boolean
displaydetabbedcolumn = file.displaydetabbedcolumn; -- boolean
converttabstospaces = file.converttabstospaces; -- boolean
lastfoundlength = file.lastfoundlength; -- integer
keeptrailingblanks = file.keeptrailingblanks; -- boolean
originalcurrentline = file.originalcurrentline; -- integer
isnew = file.isnew; -- boolean
linestruncated = file.linestruncated; -- integer
cachemaxlines = file.cachemaxlines; -- integer
connection = file.connection; -- object
connectionname = file.connectionname; -- string
issaveable = file.issaveable; -- boolean
lastfoundcolumn = file.lastfoundcolumn; -- integer
lastfoundline = file.lastfoundline; -- integer
lastsearchstring = file.lastsearchstring; -- string
selection = file.selection; -- record
title = file.title; -- string
ismodified = file.ismodified; -- boolean
isonhost = file.isonhost; -- boolean

file.close();

writelog("fullfilename = " + string(fullfilename));
writelog("linecount = " + string(linecount));
writelog("isqedit = " + string(isqedit));
writelog("workfilename = " + string(workfilename));
writelog("recordlength = " + string(recordlength));
writelog("isreadonly = " + string(isreadonly));
writelog("autoindent = " + string(autoindent));
writelog("displaydetabbedcolumn = " + string(displaydetabbedcolumn));
writelog("converttabstospaces = " + string(converttabstospaces));
writelog("lastfoundlength = " + string(lastfoundlength));
writelog("keeptrailingblanks = " + string(keeptrailingblanks));
writelog("originalcurrentline = " + string(originalcurrentline));
writelog("isnew = " + string(isnew));
writelog("linestruncated = " + string(linestruncated));
writelog("cachemaxlines = " + string(cachemaxlines));
if exists(connection) then -- Does not exist for local files

writelog("connection = " + string(connection));
else

writelog("connection = <none for local file>");
endif
writelog("connectionname = " + string(connectionname));
writelog("issaveable = " + string(issaveable));
writelog("lastfoundcolumn = " + string(lastfoundcolumn));
writelog("lastfoundline = " + string(lastfoundline));
writelog("lastsearchstring = " + string(lastsearchstring));
writelog("selection = " + string(selection));
writelog("title = " + string(title));
writelog("ismodified = " + string(ismodified));
writelog("isonhost = " + string(isonhost));

If you execute this script to open c:\autoexec.bat, this is what you might see
in the log window:

122 • Objects, Methods and Properties Qedit Scripting Language User Manual

fullfilename = c:\autoexec.bat
linecount = 4
isqedit = 0
workfilename =
recordlength = 8172
isreadonly = 0
autoindent = 1
displaydetabbedcolumn = 0
converttabstospaces = 0
lastfoundlength = 0
keeptrailingblanks = 0
originalcurrentline = 0
isnew = 0
linestruncated = 0
cachemaxlines = 4200
connection = <none for local file>
connection name =
issaveable = 0
lastfoundcolumn = 1
lastfoundline = 1
lastsearchstring = something
selection = {Start: {Line: 1, Column: 1}}
title = autoexec.bat
ismodified = 0
isonhost = 0

If you try it on a host file, this is what you might see:

fullfilename = /home/dev/escape.html
linecount = 73
isqedit = 0
workfilename = /var/tmp/qscr.UAAa27026
recordlength = 8172
isreadonly = 0
autoindent = 1
displaydetabbedcolumn = 0
converttabstospaces = 0
lastfoundlength = 0
keeptrailingblanks = 0
originalcurrentline = 59
isnew = 0
linestruncated = 0
cachemaxlines = 4200
connection = <Object: Connection UX Scripts>
connection name = UX Scripts
issaveable = 0
lastfoundcolumn = 1
lastfoundline = 1
lastsearchstring = something
selection = {Start: {Line: 60, Column: 7}}
title = UX Scripts: escape.html
ismodified = 0
isonhost = 1

Here is a subroutine called CheckLastFound() that we use in the Qedit test
suite. The subroutine checks three document properties. It is called after a call to
Find() to verify that the found string was the one expected by the test:

Qedit Scripting Language User Manual Objects, Methods and Properties • 123

sub CheckLastfound(file, startLine, startCol, theString)

returnValue = true;

if file.lastfoundline <> startLine then
writelog("Last found line " + string(file.lastfoundline) +

" not the expected " + string(startLine));
returnValue = false;
endif

if file.lastfoundcolumn <> startCol then
writelog("Last found column " + string(file.lastfoundcolumn) +

" not the expected " + string(startCol));
returnValue = false;

endif

if file.lastfoundlength <> length(theString) then
writelog("Last found length " + string(file.lastfoundlength) +

" does not match " + string(length(theString)));
returnValue = false;
endif

return returnValue;

endsub

Document Methods
There are a lot of things you can do with a document and for each operation, there is
a document method.

Activate() Entab() Insert() SaveAs()

Close() Find() InsertColumn() Select()

Copy() FindAll() Paste() SetWidth()

Cut() GetSelectedText() PrintOnHost() ShiftLeft()

Delete() GetText() PrintOnLocal() ShiftRight()

Detab() Guides() Save() Tabs()

Most document methods return True or False to indicate success or failure. The
returned value should always be checked before proceeding to the next step. If there
is a possibility of failure, you might want to use a Try-Recover block.

Activate() Document Method
This method does not require parameters and the return value is an integer.

This method moves the focus to the specified document and brings the window to
the front. The purpose of the Activate() method is to make the document the
"active" one. The active document is the document window that you see in the
foreground. You may want to bring a specific window to the front before asking the
user for input with Dialog().

Here is an example from one Robelle's test scripts. In this script, there are several
documents open and we want a specific one on top at each debugging Dialog()
call:

124 • Objects, Methods and Properties Qedit Scripting Language User Manual

file.select(startline: 1, endline: file.linecount);
file.copy();

comparefile = newfile();
comparefile.paste();

-- Loop through each line of the copy deleting the column range
repeat for inx from firstline to lastline

comparefile.delete(startline: inx,
endline: inx,
startcolumn: firstcolumn,
endcolumn: lastcolumn);

endrepeat

comparefile.activate(); -- Brings <comparefile> to the front
result = dialog("examine comparison file after rectangular delete.");

deleteresult = file.delete(startline: firstline,
endline: lastline,
startcolumn: firstcolumn,
endcolumn: lastcolumn,
rectangular: true);

file.activate(); -- Brings <file> to the front
result = dialog("examine original file after rectangular delete.");

Close() Document Method
The positional parameters are:

• DiscardChanges (boolean)

• ForceOverwrite (boolean)

• IgnoreErrors (boolean)

The return value is boolean.

This method closes an open document, releasing resources and ending all operations
on that document. See also the "Save() Document Method" on page 142 and
"SaveAs() Document Method" on page 142.

Here are all of the parameters to the close() method:

• DiscardChanges: True means you want to discard changes instead of asking
if you want to save them.

• ForceOverwrite: True means you want to automatically save the changes to
the document, overwriting any existing file without asking if it is okay.

• IgnoreErrors: True means you want to ignore possible errors during the close
operation i.e. the file is closed anyway.

It is good programming practice to explicitly close() the files you do not need
anymore. This way you can be sure to close the files with the options you prefer.

Copy () Document Method
There are no parameters to Copy() and the return value is boolean.

This method copies the current selection to the clipboard. The previous contents of
the clipboard is erased. This is equivalent to having a document active and doing
CTRL+C on the keyboard or using the Copy command on the Edit menu. You can
code as if there were a single clipboard shared by the client PC and all host servers.
See also "Cut() Document Method" on page 125 and "Paste() Document Method"
on page 141.

Qedit Scripting Language User Manual Objects, Methods and Properties • 125

For details on how to make a selection, see the "Select() Document Method" on
page 143.

Below is a short example of a Select() and Copy() that writes the entire
document to the clipboard. For a full example on how to copy text across documents,
see "Copying Files Between Systems" on page 77.

localfile = open(localfilename);
localfile.select(startline: 1, endline: localfile.linecount);
localfile.copy();

Cut() Document Method
There are no parameters to Cut() and the return value is boolean.

This method copies the current selection to the clipboard, then deletes it from the
file. The previous contents of the clipboard is erased. This is equivalent to having a
document active and doing CTRL+X on the keyboard or using the Cut command on
the Edit menu. You can code it as if there were a single clipboard shared by the
client PC and all host servers. See also "Copy () Document Method" on page 124 and
"Paste() Document Method" on page 141.

For details on how to make a selection, see "Select() Document Method" on page
143.

Below is the CutRange() subroutine we use in the Qedit test suite. It is a
subroutine that does a rectangular cut from a file, then simulates the same operation
using other methods and compares the results to ensure they are identical. This
subroutine calls two other subroutines: FillFile() and CompareFile(). See
"Initializing a Test File" on page 69 and "Comparing Two Files" on page 69.

<<
The cutrange() subroutine cut the specified rectangle
to the clipboard.

>>

sub cutrange(file, name, firstline, lastline, firstcolumn, lastcolumn)

firsttest = name + "-paste";

-- select the rectangle
file.select (startline: firstline,

endline: lastline,
startcolumn: firstcolumn,
endcolumn: lastcolumn,
rectangular: true
);

file.cut (); -- writes this area to clipboard

endsub

Delete() Document Method
The positional parameters are:

• StartLine or Line (integer)

• StartColumn or Column (integer)

• EndLine (integer)

• EndColumn (integer)

• Start (record)

126 • Objects, Methods and Properties Qedit Scripting Language User Manual

• End (record)

• Range (record)

• Rectangular (boolean)

• FillWithSpaces (boolean)

The return value is boolean.

This method deletes a portion of a document. This includes the ability to delete a
column range. The area to be deleted is specified in the same manner in which
Select() specifies a region.

Delete() returns True if the operation is successful, otherwise it returns False.
Here are all possible parameters to the Delete() method:

• StartLine: An integer specifying the starting line of the region to delete. Line
is a valid alias. As in Select(), if an explicit StartColumn is not specified,
the entire start line is selected.

• StartColumn: An integer specifying the first column in StartLine of the
region to be deleted. Column is a valid alias.

• EndLine: An integer specifying the last line of the region to be deleted; as in
Select(), if an EndColumn is not specified, the entire last line is selected.

• EndColumn: An integer specifying the last column in EndLine of the region
to be deleted.

• FillWithSpaces: A boolean that, if True, fills the selected region with spaces
instead of removing it from the document.

• Rectangular: A boolean that, if True, specifies a columnar delete. In that
case, the selected region is a rectangle, starting at an upper-left corner (specified
by line and column) and ending at a lower-right corner. If False, the region
deleted is a normal stream of characters instead of a columnar area.

• Range: A record that specifies the entire range to be delete, as in

If you specify a Range, you don't specify any of the preceding coordinate
parameters including Rectangular. This means that a complete Range value
could be:

{Start: {Line:5, Column:1}, End:{Line:10, Column:1},
Rectangular: True}

• Start: A record that specifies the starting point of the region to be deleted, as in
{Line:5, Column:1}

Of course if you pass a Start record, you should not pass a StartLine and
StartColumn.

• End: A record that specifies the ending point of the region to be deleted, as in

{Line:10, Column:1}

Of course, if you pass an End range, you should not pass an EndLine and
EndColumn.

Here are some examples showing the various parameters that can be passed to
Delete():

Qedit Scripting Language User Manual Objects, Methods and Properties • 127

-- delete a single line including end-of-line:
file = open("c:\temp\qwintest\select.txt");
file.delete(startline: 3);
result = dialog("Line 3 is deleted");
file.close(discardchanges: true);

-- delete multiple lines:
file = open("c:\temp\qwintest\select.txt");
file.delete(startline: 3, endline: 5);
result = dialog("Line 3 through 5 are deleted");
file.close(discardchanges: true);

-- delete a portion of a single line:
file = open("c:\temp\qwintest\select.txt");
file.delete(startline: 3, startcolumn: 2, endcolumn: 5);
result = dialog("Line 3, columns 2 through 5 are deleted");
file.close(discardchanges: true);

-- delete a multi-line and multi-column region:
file = open("c:\temp\qwintest\select.txt");
file.delete(startline: 3, startcolumn: 2, endline: 7, endcolumn: 5);
result = dialog(

"Line 3, column 2 through line 7, column 5 are deleted");
file.close(discardchanges: true);

-- delete part of multiple lines using start/end record structures:
file = open("c:\temp\qwintest\select.txt");
startrec = {line: 2, column: 2};
endrec = {line: 5, column: 3};
file.delete(start: startrec, end: endrec);
result = dialog("Start 2,2 through End 5,3");
file.close(discardchanges: true);

-- delete a selection consisting of one character:
file = open("c:\temp\qwintest\select.txt");
file.select(startline: 3, startcolumn: 6, endcolumn: 7);
file.delete();
result = dialog("Delete selection (last character of line 3)");
file.close(discardchanges: true);

If you specify

rectangular: true

as one of the parameters in your Delete() method calls, Qedit delete these
columns only. Here are some typical rectangular Delete() calls:

-- Delete a rectangle:
-- Columns 15 through 20 of lines 11 through end of file
result = file.delete(startline: 11,

startcolumn: 15,
endline: file.linecount,
endcolumn: 20,
rectangular: true);

-- Delete column 1 of all lines in the file
result = file.delete(startline: 1,

startcolumn: 1,
endline: file.linecount,
endcolumn: 1,
rectangular: true);

Detab() Document Method
The positional parameters are:

• StartLine (integer)

• EndLine (integer)

128 • Objects, Methods and Properties Qedit Scripting Language User Manual

The return value is boolean.

This method converts all tab characters to spaces in document lines, using the current
tab stops settings as a guide. See also the "Entab() Document Method" on page 128,
which is the opposite of Detab(). If a tab represents a single space, it is converted
to a space by Detab().

Detab() returns True if the operation is successful, otherwise it returns False.
The two parameters specify the line range to "detab". If you do not specify any
parameters, the entire file is detabbed. Detab() ignores selections.

• StartLine: An integer that specifies the first line to be detabbed. If you don't
specify StartLine, then line 1 is assumed.

• EndLine: An integer that specifies that last line in the region. If you don't
specify EndLine, then the last in the document is assumed i.e., file.linecount.

When working with tabs, you will find that enabling file.ShowInvisibles and
qedit.UseRulerBar are handy for debugging. Here are some example calls to
Detab():

file = open("c:\robdev\manage.html");
-- Detab the Entire File

file.Detab();
-- detab lines 2 through 9

file.detab(startline:2, endline: 9);

Entab() Document Method
The positional parameters are:

• StartLine (integer)

• EndLine (integer)

The return value is boolean.

This method changes spaces to a combination of tab characters and spaces, using the
document's tab stops settings as a guide. See also the "Detab() Document Method"
on page 127, which is the opposite of Entab(). Entab() never converts single
spaces to tabs.

Entab() returns True if the operation is successful, otherwise it returns False.
The two parameters specify the line range to "entab". If you do not specify any
parameters, the entire file is entabbed. Entab() ignores selections.

• StartLine An integer that specifies the first line to be entabbed. If you don't
specify StartLine, then line 1 is assumed.

• EndLine An integer that specifies that last line in the region. If you don't
specify EndLine, then the last in the document is assumed i.e., file.linecount.

When working with tabs, you will find that enabling file.ShowInvisibles and
qedit.UseRulerBar are handy for debugging. Here are some example calls to
Entab():

Qedit Scripting Language User Manual Objects, Methods and Properties • 129

file = open("c:\robdev\manage.html");
-- Entab Part of a File

file.Entab(startline: 2, endline: 3);

-- Entab an entire file
file.entab();

Find() Document Method
The positional parameters are:

• String (string)

• Pattern (string)

• Regexp (string)

• Backwards (boolean)

• IgnoreCase (boolean)

• SelectionOnly (boolean)

• StartAtTop or EntireFile (boolean)

• Smart (boolean)

• LeftColumn (integer)

• RightColumn (integer)

• StartLine (integer)

• EndLine (integer)

• ReplaceWith (string)

The return value is boolean.

This method has two major functions:

• Find an occurrence of a string in a document

• Replace one or more occurrences of a string with a different one.

There are many parameters to Find() but most of them are optional. Find()
returns True if the operation is successful, otherwise it returns False. Certain
document properties are updated by Find(): LastFoundLength,
LastFoundColumn, and LastFoundLine. You can check these after a call to
Find() to see what was found.

• String: A string to be searched for. Unless IgnoreCase or Smart is True,
the string must be matched exactly, character by character.

• Pattern: A string that specifies a Qedit-style "match pattern". For example,
"@bob@green@" matches any occurrence of the string "bob" anywhere in a
line, followed by zero or more intervening characters and then the string
"green". The pattern match control characters are the same as those used in the
standard host-based Qedit. See the Qedit for Windows User Manual or online
help for details.

• Regexp: A string containing a regular Expression to match. Regular
expressions are much more powerful than patterns. For example, the expression
"^..$" matches any line that contains exactly two characters. See the Qedit for
Windows User Manual or online help for details.

130 • Objects, Methods and Properties Qedit Scripting Language User Manual

Note that the String, Pattern and Regexp parameters are mutually exclusive that
is, in a single call, you can only specify one of them.

• SelectionOnly: A boolean that, if True, causes the search to occur only in the
current selection. See "Select() Document Method" on page 143 for details on
how to select text.

• EntireFile: A boolean that, if True, causes the operation to occur from the
start of the file. The default is to search from the current cursor position.
StartAtTop is also accepted as an alias parameter.

• StartLine: An integer specifying the line to start searching from. If EndLine is
not specified, the search continues until end of file. The default is to search from
the current cursor position. You can also specify SelectionOnly to search
within selected text instead.

• EndLine: An integer that specifies the last line to search for the string. If
StartLine is not specified, the search starts from the current cursor position or
at line 1, if EntireFile is True.

• LeftColumn: An integer specifying the leftmost column of the string match.
Column numbers start at 1. If LeftColumn is specified but RightColumn is
not, Find() searches to the end of each line.

• RightColumn: An integer that specifies the rightmost column in any line that
can match the string. If LeftColumn is not specified, the string match can
occur between the first column of each line and RightColumn. The first
column depends on the Language of the file. For most languages, it is 1. For
some languages such as Cobol, the first column is 7. See the Qedit for Windows
User Manual for details. If both LeftColumn and RightColumn are specified,
the string must match within those columns, inclusive.

• Backwards: A boolean that, if True, searches backward from the current
position. The default is to search forward.

• IgnoreCase: A boolean that, if True, causes the case of alphabetic characters
to be ignored in the search. The default is False.

• Smart: A boolean that, if True, matches a string only if it is not an embedded
string i.e. it is considered a word. The definition of a word is dependent on the
Language of the file. See the Qedit for Windows User Manual for details.

• ReplaceWith: A string that replaces each of the matches. When used, the
method returns the number of occurrences replaced.

See "Prompt Before Replacing" on page 77 for an example that selectively replaces
matches in any file.

Here are some examples on how you can use Find():

Qedit Scripting Language User Manual Objects, Methods and Properties • 131

-- Search for the next "Bob" in the file
findResult = file.find(string: "Bob");

-- Search for the first "Bob" within columns 21 to 32
findResult = file.find(string: "Bob", entirefile: true,

leftcolumn: 21, rightcolumn: 32);

-- Search for a Regular Expression:
-- Find the next line containing only 2 characters
findResult = file.find(regexp: "^..$");

-- Replace 1 with 9 in the entire file
replaceResult = file.find(string:"1", entirefile: true,

replacewith:"9");

-- search for a string within a column range (exactly in columns 1-3)
file.select(line: 1, column: 1); -- Position caret at 1,1
findResult = file.find(string: "Bob", leftcolumn: 1, rightcolumn: 3);

-- search to the right of a column, starting from the cursor position
findResult = file.find(string:"5", leftcolumn: 20);

-- search within a selection only
file.select(startline: 1, endline: 13, startcolumn: 2, endcolumn: 2);
findresult = file.find(string:"1", selectiononly: true);

-- search 3 lines of the file for a string
findResult = file.find(startline: 13, endline: 15, string:"1");

-- search with the Smart Option, should ignore "Summary"
findResult = file.find(string: "Sum", entirefile: true, smart: true);

-- Ignore the Case and use Smart Option, matches "sum", ignores "sums"
findResult = file.find(string: "Sum", ignorecase: true, smart: true);

-- search backwards from a point
file.select(line: 13, column: 22); -- Position caret at 13, 22
findResult = file.find(string: "Qedit", backwards: true);

-- replace "Bob" with "Robert" from current position on
replaceResult = file.find(string: "Bob", ignorecase: true, smart: true,

replacewith: "Robert");

-- Search for "Bob" followed by "Green", anywhere in line, any case.
findResult = file.find(pattern: "@Bob@Green@", ignorecase: true);

After a successful string match, the current selection becomes the matched text. Here
is the CheckString() subroutine from the Qedit test suite. It is called after a
Find() to verify that the text matched is the expected text:

132 • Objects, Methods and Properties Qedit Scripting Language User Manual

sub CheckString(file, testName, theString)

returnValue = true;

foundList = file.getselectedtext();
if foundList = {} then

foundString = "";
else

if length(foundList) > 1 then
TestFailure(file, testName, "found more than one string");

endif
foundString = foundList[1];

endif

if foundString <> theString then
TestFailure(file, testName, "File selection " +

string(foundString) + " does not match " +
string(theString));

returnValue = false;
endif

return returnValue;

endsub

FindAll() Document Method
The positional parameters are:

• String (string)

• Pattern (string)

• Regexp (string)

• IgnoreCase (boolean)

• Smart (boolean)

• LeftColumn (integer)

• RightColumn (integer)

• StartLine (integer)

• EndLine (integer)

• SearchReferenced (integer)

The return value is a record.

This method is used to find all occurrences of a string. When executed on a host file,
the search operation is performed by the server. Only the matching lines are
transmitted back to the client.

There are many parameters to FindAll() but most of them are optional.

• String: A string to be searched for. Unless IgnoreCase or Smart is True,
the string must be matched exactly, character by character.

• Pattern: A string that specifies a Qedit-style "match pattern". For example,
"@bob@green@" matches any occurrence of the string "bob" anywhere in a
line, followed by zero or more intervening characters and then the string
"green". The pattern match control characters are the same as those used in the
standard host-based Qedit. See the Qedit for Windows User Manual or online
help for details.

Qedit Scripting Language User Manual Objects, Methods and Properties • 133

• Regexp: A string containing a regular Expression to match. Regular
expressions are much more powerful than patterns. For example, the expression
"^..$" matches any line that contains exactly two characters. See the Qedit for
Windows User Manual or online help for details.

Note that the String, Pattern and Regexp parameters are mutually exclusive that
is, in a single call, you can only specify one of them.

• StartLine: An integer specifying the line to start searching from. If EndLine is
not specified, the search continues until end of file. The default is to search from
the current cursor position.

• EndLine: An integer that specifies the last line to search for the string. If
StartLine is not specified, the search starts from the current cursor position.

• LeftColumn: An integer specifying the leftmost column of the string match.
Column numbers start at 1. If LeftColumn is specified but RightColumn is
not, FindAll() searches to the end of each line.

• RightColumn: An integer that specifies the rightmost column in any line that
can match the string. If LeftColumn is not specified, the string match can
occur between the first column of each line and RightColumn. The first
column depends on the Language of the file. For most languages, it is 1. For
some languages such as Cobol, the first column is 7. See the Qedit for Windows
User Manual for details. If both LeftColumn and RightColumn are specified,
the string must match within those columns, inclusive.

• IgnoreCase: A boolean that, if True, causes the case of alphabetic characters
to be ignored in the search. The default is False.

• Smart: A boolean that, if True, matches a string only if it is not an embedded
string i.e. it is considered a word. The definition of a word is dependent on the
Language of the file. See the Qedit for Windows User Manual for details.

• SearchReferenced: An integer specifying the search range in terms of files
referenced in the current file. By default, FindAll() scans only the current
file. This is the equivalent of a value of 0. Instead of remembering the numeric
values for each option, you can use the SearchReferenced application
constants.

If you wish to search files referenced in Include statements, set
SearchReferenced to 1. Include statements must start with $Include,
!Include, #Include and .Include. The leading characters, "$", "!", "#"
or "." must be in the first column. The Include keyword does not have to start
immediately. It can be separated from the leading character by spaces. Whatever
follows the Include keyword is used as a filename.

If the statement starts with #Include, Qedit assumes it's a C-type construct. If
the filename is enclosed between a less-than "<" and a greater-than ">", Qedit
assumes this is a system library file. Qedit then prepends the filename with
/usr/include/. If the system library name starts with "../h", Qedit
assumes it's a UNIX Kernel file and ignores it completely.

If you wish to search files referenced in Use statements, set
SearchReferenced to 2. Use statements must have the keyword Use starting
in the first column. Whatever follows is used as a filename.

If you wish to search files referenced in COBOL Copy statements, set
SearchReferenced to 3. COBOL Copy libraries, also known as Copylib on
MPE hosts, must follow COBOL syntax rules. On MPE hosts, a typical
statement is:

134 • Objects, Methods and Properties Qedit Scripting Language User Manual

Copy member-name Of library-name.

Member-name is mandatory and identifies the statements to be included. The
library-name is the filename where the member is stored. It is optional and
defaults to COPYLIB. On UNIX hosts, a typical statement is:

Copy library-name Of path-name.

Library-name is actually a filename on the UNIX host and is mandatory.
The path-name is optional and represents the directory path where the
Library-name resides. Thus, Qedit appends library-name to path-
name to build the qualified filename.

Whichever option is used, the FindAll() method scans individual files only
once, the first time they are encountered.

FindAll() returns a record containing of series of nested records. Each nested
record contains a number of elements:

• Filename: (string) this element contains the fully-qualified filename to which
the following elements are refering to.

• ErrorCode: (integer) this element indicates if there has been a problem
opening the file. If the value is 0, the access was successful. If it's not 0, it gives
some indication as to the cause of the problem.

• ErrorString: (string) this elements contains an error message describing the
problem. It contains an empty string if ErrorCode is 0.

• Lines: (record) this element is a record containing all matching lines found in
the file. Each record contains the following elements:

Text: (string) this element contains the whole line

Line: (integer) this element contains the relative record number for that line

LineNumber: (integer) this element contains the absolute line number for that
line. This number has 3 implied decimal places.

The sample script demonstrates a typical way of extracting the information returned
by the FindAll() method. Error messages are written to the Script Control
panel and actually lines of text are written to a new local file.

Qedit Scripting Language User Manual Objects, Methods and Properties • 135

OutputFile = newfile();
findresult = fileH.FindAll(string: SearchString,

searchreferenced: qedit.SearchInclude,
ignorecase: true);

repeat for fileResult in findresult
if fileResult.ErrorCode <> 0 then

writelog ("Unable to open " + fileResult.Filename);
writelog ("Error # " + string(fileResult.ErrorCode));
writelog ("Message:" + fileResult.ErrorString);

else
if length(fileResult.Lines) <> 0 then

fileHeader = "Found " + string(length(fileResult.Lines)) +
" lines in " + fileResult.Filename;

OutputFile.Insert(fileHeader);
OutputFile.Insert({"",""}); -- Skip to next line

 repeat for lineDescriptor in fileResult.Lines
 foundLine = string(lineDescriptor.Line) + ": " +

lineDescriptor.text;
 OutputFile.Insert(foundLine);

OutputFile.Insert({"",""}); -- Skip to next line
 endrepeat

else
writelog ("No lines found in " + fileResult.Filename);

endif
endif

endrepeat

GetSelectedText() Document Method
There are no parameters and the return value is a record.

This method returns a list that represents the current selection. If the selection
represents the caret i.e., there is no text selected, the returned list is empty. If the
selection is on a single line, the list contains one element. If the selection spans
multiple lines, each element in the list represents one line. See also the "GetText()
Document Method" on page 135, which is similar but specifies the selection as
parameters to the call.

There are no parameters to GetSelectedText().

See the CheckString() subroutine shown in the section about "Find() Document
Method" on page 129 for an example of how to analyze an unknown selection,
looking for a specific result.

Here is an example of how to use Select() and GetSelectedText() to
retrieve the first 2 lines of a file:

file = open("c:\personal\select.txt");

-- select the first 2 lines
file.select(startline: 1, endline: 2);

-- get the selected lines
textlist = file.GetSelectedText();

-- step through the list, writing lines to log window
repeat for nextLine in textlist
 writelog(nextLine);
endrepeat

GetText() Document Method
The positional parameters are:

• StartLine or Line (integer)

136 • Objects, Methods and Properties Qedit Scripting Language User Manual

• StartColumn or Column (integer)

• EndLine (integer)

• EndColumn (integer)

• Start (record)

• End (record)

• Range (record)

• Rectangular (boolean)

The return value is a record.

This method returns a list of lines from a document. Note that a list is always
returned, even if only a portion of a single line was requested in the Gettext()
method call. Each element in the returned list represents one line in the file. Empty
lines are also represented by an element containing an empty string.

GetText() returns True if the operation is successful, otherwise False. The
parameters to define the region to be copied are used in the same way as in the
Select() method. Here are all of the parameters to the GetText() method:

• StartLine: An integer specifying the starting line of the region to get. Line is a
valid alias. If StartColumn is not specified, the entire start line is selected.

• StartColumn: An integer specifying the first column to get from StartLine.
Column is a valid alias.

• EndLine: An integer specifying the last line of the region to get. As in
Select(), if an EndColumn is not specified, the entire last line is selected.

• EndColumn: An integer specifying the last column to get from EndLine.

• Rectangular: A boolean that, if True, specifies a columnar retrieval. In that
case, the region is a Rectangle, starting at an upper-left corner specified by line
and column, and ending at a lower-right corner. By default, the selected region
is a normal stream of characters instead of a columnar area.

• Range: A record that specifies the entire range to get. If this parameter is used,
you don't specify any of the preceding parameters. Thus the Range parameter
could appear as:

{Start: {Line:5, Column:1}, End:{Line:10, Column:1},
Rectangular: true}

• Start: A record that specifies the starting point of the region, as in
{Line:5, Column:1}

Of course, if you pass a Start record, you should not pass StartLine and
StartColumn.

• End: A record that specifies the ending point of the region, as in

{Line:10, Column:1}

Of course, if you pass an End range, you should not pass EndLine and
EndColumn.

There are several forms of calls to GetText(), depending upon how you specify
the range of text to be retrieved. Here are some examples:

Qedit Scripting Language User Manual Objects, Methods and Properties • 137

file = open("c:\personal\select.txt");

-- get a single line including end-of-line:
buf = file.gettext(line: 3);

-- get multiple lines including end-of-line:
buf = file.gettext(startline: 3, endline: 8);

-- get part of a single line including end-of-line:
buf = file.gettext(startline: 3, startcolumn: 6);

-- get a portion of a single line:
buf = file.gettext(startline: 3, startcolumn: 3, endcolumn: 6);

-- get a single character:
buf = file.gettext(startline: 3, startcolumn: 6, endcolumn: 7);

-- get portions of multiple lines:
buf = file.gettext(startline: 3, startcolumn: 6,

endline: 5, endcolumn: 2);

-- get part of multiple lines using start/end record structures:
startrec = {line: 2, column: 2};
endrec = {line: 5, column: 3};
buf = file.gettext(start: startrec, end: endrec);

-- do a full get using the range record structure:
rangerec = {{line: 4, column: 1}, {line: 9, column: 2}};
buf = file.gettext(range: rangerec);

The CompareFile() subroutine is a general purpose subroutine that uses
GetText() to compare the contents of two files. If there are any differences, it
writes an error message to the log window. CompareFile() returns True if the
files are identical and False otherwise. See "Comparing Two Files" on page 69.

Guides() Document Method
The positional parameters are:

• SetAt (integer)

• SetEvery (integer)

• ClearAt (integer)

• ClearAll (boolean)

The return value is boolean.

This method sets and clears guide lines in a document. When you Close() a
document, the guide settings are not saved in the document itself. They are saved in
your personal document database. When you Open() the file again, the guides are
set based on the settings from the document database.

The purpose of the Guides() method is to either:

• Set a guide at a specific column

• Set guides at a fixed interval e.g. every 5 columns

• Clear a guide at a specific column

• Clear all guides

Guides() returns True if the operation is successful, otherwise it returns False.
There are four parameters to Guides() and they are mutually exclusive i.e. you

138 • Objects, Methods and Properties Qedit Scripting Language User Manual

can only specify one in a given call. Columns are numbered from one and match
what you see on the ruler bar.

• SetAt: An integer that specifies a column number where a guide will be set.

• SetEvery: An integer that specifies guides at regular intervals.

• ClearAt: An integer that specifies a specific column where a guide should be
removed.

• ClearAll: A boolean that, if True, clears all guides in the file. Passing False
makes no sense and doesn't change any guides.

Column numbers start at 1. For most files, this number matches the number on the
Ruler bar. However, the Ruler bar for Cobol source files starts in column 7. It is
the first column where you can set a guide. This means that if you want to set a guide
in column 12, you have to use:

file.guides(setat: 6);

If you want to set guides at regular interval, you can use the SetEvery keyword. For
example, on files where the first column is 1, coding

file.guides(SetEvery:5);

sets guides at column 6, 11, 16, 21, etc. On a Cobol source file, the guides are at
column 12, 17, 22, etc.

In all cases, SetEvery does not clear existing guides, so it is usually good practice
to first call

file.guides(ClearAll);

Here are some example calls to Guides():

file = newfile();
-- Use the SetAt parameter to set a guide at column 6
file.guides(setat: 6);

-- Use the ClearAt parameter to clear a single guide at column 5
file.guides(clearat: 5);

-- Use the ClearAll parameter to clear all guides.
file.guides(clearall: true);

-- Use the SetEvery parameter to set a guide every 6 (clear first)
file.guides(clearall: true);
file.guides(setevery: 6);

Insert() Document Method
The positional parameters are:

• Text (any type)

• At (record)

The return value is boolean.

This method inserts text into the document. You must do something special to create
a dynamic (i.e., non-constant) place to insert the text. You can insert one or more
lines in a single call because the Text parameter can be either a string constant or a
list.

Here are the parameters to the Insert() method:

Qedit Scripting Language User Manual Objects, Methods and Properties • 139

• At: A record specifying the line and column where the Text should be inserted,
as in:

{line: 5, column: 10}

• Text: A string or a list of strings to be inserted. Each element of the list creates a
new line.

Insert() returns False if anything goes wrong, otherwise it returns True.

Here are two common ways to call Insert():

file = newfile();

-- Insert a single line at the start of the file (without a NewLine):
file.insert(at:{line: 1, column: 1}, text: "Single line");
result = dialog("File with single line (no NewLine)");

-- Insert two lines after the one above (each with a NewLine):
file.insert(at:{line: 2, column: 1}, text: {"Line Two", "Line Three"});
result = dialog("File with three lines (all with NewLines)");

Here is an example showing how to specify a dynamic (non-constant) insertion
point. It also contains a helper subroutine which creates the data structure needed to
specify the insertion line and column point:

sub create_at (line, column)

result = {}; -- Empty record structure

result.line = line; -- "at" needs a line
result.column = column; -- and a column
return result; -- return the record structure

endsub;

-- Mainline

file = open("c:\personal\testdata.txt");
row = 5; -- Insert a new line at line 5
where = create_at(row, 1);
file.insert(at: where, text: "New Text");

-- Or do it all in the Insert() call:
row = 6; -- Insert at line 6 now
file.insert(at: create_at(row,1), text: "New Text");

file.Close();

Here is an example of the FillFile() subroutine used in the Qedit test suite. It
initializes a file with a known set of text lines. Note that each concatenation
operation, denoted with a plus sign "+", on the text list adds one more line. This is
how you create a data structure so that a line is inserted with a NewLine.

140 • Objects, Methods and Properties Qedit Scripting Language User Manual

sub FillFile(file)

lines = {}; -- creates an empty list

file.delete(startline: 1, endline: file.linecount); -- empty file
file.tabs(ClearAll: true);
file.tabs(SetEvery: 5);

lines = lines + ""; -- Empty line
lines = lines + "A";
lines = lines + ""; -- Empty line
lines = lines + "bb";
lines = lines + ""; -- Empty line
lines = lines + "CCC";
lines = lines + ""; -- Empty line
lines = lines + "dddd";
lines = lines + ""; -- Empty line
lines = lines + "EEEEE";

file.insert(at:{line: 1, column: 1}, text: lines);

endsub

This sample subroutine inserts 10 lines in a file. There will be five lines with letters
and a blank line between each one.

InsertColumn() Document Method
The positional parameters are:

• StartLine or Line (integer)

• EndLine (integer)

• AtColumn (integer)

• RightMargin (integer)

• Text (string)

The return value is boolean.

This method inserts a string at a specified column in one or more lines in a
document. InsertColumn() returns True if the insertion is successful,
otherwise it returns False.

Here are the parameters to the InsertColumn() method:

• StartLine: An integer specifying the first line to be inserted into. A valid alias
is Line.

• EndLine: An integer specifying the last line to be inserted into.

• AtColumn: An integer specifying the column to insert in front of. The number
for the first column depends on the Language of the file. Column numbers
start at 1 for most languages. In some languages such as Cobol, the first column
is 7. See the Qedit for Windows User Manual for details.

• RightMargin: An integer specifying the column of the right margin. Any
existing text in a line from this column on will not be changed by the insertion.
If characters would normally have been right-shifted into that column, they will
be discarded instead.

• Text: A string specifying the text to be inserted in each line. With
InsertColumn(), it is only possible to insert the same text i.e., a constant, in
each line. If you wish to copy some varying text and insert it as a column, see
"Paste() Document Method" on page 141.

Qedit Scripting Language User Manual Objects, Methods and Properties • 141

See "Draw a Box" on page 75 for uses of InsertColumn() in context.

Here is a subroutine to insert a rectangle of stars:

sub insertbox(file, startl, endl, startc, endc)

width = endc - startc + 1;

stars = "";
repeat for x from 1 to width by 1

stars = stars + "*";
endrepeat

file.insertcolumn(startline: startl,
endline: endl,
atcolumn: startc,
text: stars);

endsub

Paste() Document Method
There are no parameters and the return value is boolean.

This method pastes the entire contents of the clipboard into a document.

If the current cursor is a caret i.e. there is no selection, the text is inserted at that
position. If there is a selection, paste() replaces the current selection.

If the current selection is rectangular, the rectangle is replaced with the clipboard,
except that lines are truncated instead of folded. Normally you would do a
rectangular Copy() or Cut() to the clipboard before doing a Paste() into a
rectangular selection. If you want to insert a rectangle instead of replacing an
existing one, see "Insert a Rectangular Selection" on page 72.

Paste() returns True if the operation is successful, otherwise it returns False.
There are no parameters.

Here is a subroutine that pastes the clipboard into a rectangular region of the
document:

sub InsertClipboard(file, startl, endl, startc, endc)

file.select(startline: startl,
startcolumn: startc,
endline: endl,
endcolumn: endc,
rectangular: true);

file.paste();

endsub

PrintOnHost() Document Method
The positional parameters are:

• StartLine (integer)

• EndLine (integer)

• DeviceName (string)

• Numbered (boolean)

• Shift (boolean)

The return value is boolean.

142 • Objects, Methods and Properties Qedit Scripting Language User Manual

This method sends one or more lines to a printing device on the host. If StartLine
and EndLine are not specified, Qedit prints the whole file. PrintOnHost()
returns True if the text has been successfully printed, otherwise it returns False.

Here are the parameters to the PrintOnHost() method:

• StartLine: An integer specifying the first line to print. If Endline is not
specified, Qedit prints from StartLine to the end of the file.

• EndLine: An integer specifying the last line to print. If StartLine is not
specified, Qedit prints from the start of the file up to and including Endline.

• DeviceName: The name of the print device on the host.

• Numbered: A boolean that, if True, requests that line numbers be included on
the output.

• Shift: A boolean that, if True, shifts lines four characters to the right to provide
a wider left margin.

PrintOnLocal() Document Method
The positional parameters are:

• StartLine (integer)

• EndLine (integer)

The return value is boolean.

This method sends one or more lines to the default local printer. If StartLine and
Endline are not specified, Qedit prints the whole file. PrintOnLocal() returns
True if the text has been successfully printed, otherwise it returns False.

Here are the parameters to the PrintOnLocal() method:

• StartLine: An integer specifying the first line to print. If Endline is not
specified, Qedit prints from StartLine to the end of the file.

• EndLine: An integer specifying the last line to print. If StartLine is not
specified, Qedit prints from the start of the file up to and including Endline.

Save() Document Method
There are no parameters and the return value is boolean.

This method saves changes to a document, whether local or host. You have to use
SaveAs()on files created with the Newfile() application method. If you try to
use Save(), an error is generated.

This example shows how you would use Save() after you Open() a file and
replaced some strings:

file = open("c:\webpages\index.html");
file.find(entirefile: true, Smart: true, IgnoreCase: true,
 string: "Acme Software", replacewith: "IBM/Acme Inc.");
file.save();
file.close();

SaveAs() Document Method
The positional parameters are:

• Filename (string)

Qedit Scripting Language User Manual Objects, Methods and Properties • 143

• ForceOverwrite (boolean)

The return value is boolean.

This method saves a document with a new filename without changing the
connection, but does not Close() the file. You can use SaveAs() to make a
Newfile() permanent or to rename an existing file opened with Open().

Here are all of the parameters to the Saveas() method:

• Filename: A string specifying the pathname of the file.

• ForceOverwrite: A boolean. Specify True to purge an existing file with the
same name. By default, a name collision causes an error.

The sample code below creates a file using Newfile(), then uses SaveAs() to
save it.

tofile = newfile(connection: connectionname);

tofile.saveas(filename: filename -- give new file this name
,forceoverwrite: true -- ok to purge old
); -- saves file, but does not close it

tofile.close();

Select() Document Method
The positional parameters are:

• StartLine or Line (integer)

• StartColumn or Column (integer)

• EndLine (integer)

• EndColumn (integer)

• Start (record)

• End (record)

• Range (record)

• Rectangular (boolean)

The return value is boolean.

This method creates a selection in the document. You can also use Select() to
position the caret i.e., the logical insertion point.

Select() returns True if the selection is successful, otherwise it returns False.
The many parameters provide alternative ways of specifying the selected region. If
you do not specify an end point for your selection, your are positioning the caret i.e.
the cursor, instead.

• StartLine: An integer specifying the starting line of the region to select. Line is
a valid alias. If StartColumn is not specified, the entire start line is selected.

• StartColumn: An integer specifying the first column to be selected in
StartLine. Column is a valid alias.

• EndLine. An integer specifying the last line of the region to be selected. If
EndColumn is not specified, the entire last line is selected.

• EndColumn: An integer specifying the last column to be selected in EndLine.

144 • Objects, Methods and Properties Qedit Scripting Language User Manual

• Range. A record that specifies the entire range to select, as in

If you specify a Range, you don't specify any of the preceding parameters.
Thus a complete Range parameter could be:

{Start: {Line:5, Column:1}, End:{Line:10, Column:1},
Rectangular: true}

• Rectangular: A boolean that, if True, specifies a rectangular selection. The
region will be a Rectangle, starting at an upper-left corner specified by line and
column and ending at a lower-right corner. You may Paste() into or
Delete() a rectangular selection. If False, the selected region is a normal
stream of characters instead of a columnar area.

• Start: A record that specifies the starting point of the region, as in

{Line:5, Column:1}

Of course if you pass a Start record, you should not pass StartLine and
StartColumn.

• End: A record that specifies the ending point of the region, as in
{Line:10, Column:1}

Of course, if you pass an End range, you should not pass EndLine and
EndColumn.

See the "Paste() Document Method" on page 141 for an example that selects a
rectangle and pastes the clipboard into it. Below are some example calls to
Select(). We use the GetSelectedText() method to show what has been
selected. Notice that we convert the buf variable, the result from
GetSelectedText(), into a string to format the logged information.

Qedit Scripting Language User Manual Objects, Methods and Properties • 145

file = open("c:\personal\select.txt");

-- position the caret to 3,2 (there is no selection in this case)
file.select(line: 3, column: 2);
writelog("Caret at 3,2");

-- select a single line including end-of-line:
file.select(line: 3);
buf = file.getselectedtext();
writelog("Line 3: " + string(buf));

-- select multiple lines including end-of-line:
file.select(startline: 3, endline: 8);
buf = file.getselectedtext();
writelog("Line 3 through 8: " + string(buf));

-- select a portion of a single line:
file.select(startline: 3, startcolumn: 3, endcolumn: 6);
buf = file.getselectedtext();
writelog("Line 3, columns 3 through 6: " + string(buf));

-- select a single character:
file.select(startline: 3, startcolumn: 6, endcolumn: 6);
buf = file.getselectedtext();
writelog("Line 3,3 column 6: " + string(buf));

-- select portions of multiple lines:
file.select(startline: 3, startcolumn: 6, endline: 5, endcolumn: 2);
buf = file.getselectedtext();
writelog("Line 3, column 6 to line 5, column 2: " + string(buf));

-- select part of multiple lines using start/end record structures:
startrec = {line: 2, column: 2};
endrec = {line: 5, column: 3};
file.select(start: startrec, end: endrec);
buf = file.getselectedtext();
writelog("Line 2,2 through line 5,3: " + string(buf));

-- do a full selection using the range record structure:
rangerec = {{line: 4, column: 1}, {line: 9, column: 2}};
file.select(range:rangerec);
buf = file.getselectedtext();
writelog("Line 4,1 through line 9,2: " + string(buf));

SelectAll() Document Method
There are no parameters and the return value is boolean.

This method selects all the lines in the file.

This example shows how you would use SelectAll() to copy a file to the
clipboard and paste it in another file:

file = open("c:\webpages\index.html");
file.selectall();
file.copy();

otherfile.activate(); -- Switch to the other document
otherfile.paste();

SetWidth() Document Method
There is only one positional parameter:

• NewWidth (integer)

The return value is boolean.

146 • Objects, Methods and Properties Qedit Scripting Language User Manual

This method specifies the maximum document width. You can only change the
width of certain languages such as Text or Data. See the Qedit for Windows User
Manual for details.

SetWidth() returns True if the operation is successful, otherwise it returns
False. There is only one parameter to SetWidth():

• NewWidth: An integer specifying the maximum document width. The largest
size currently supported in Qedit is 8,172 characters.

This example shows how to create a new file and set the maximum width to 80
characters:

file = newfile();
file.setwidth(80);

ShiftLeft() Document Method
The positional parameters are:

• Columns (integer)

• StartLine (integer)

• EndLine (integer)

The return value is boolean.

This method shifts the specified lines left a specific number of columns.
ShiftLeft() does not shift non-blank characters off the line. If the shift count is
too high, the line ends up left justified. See also the "ShiftRight() Document Method"
on page 146.

ShiftLeft() returns True if the shift is successful, otherwise it returns False.

Here are the parameters to the ShiftLeft() method:

• Columns: An integer specifying the number of columns by which the text
should be shifted. If this parameter is not specified or if it is -1, the line is shifted
to the next tab stop. Shift of a tab stop only works if there are tab characters in
the file (it does not work on equivalent spaces).

• StartLine: An integer specifying the first line to shift. StartLine defaults to
the first line of the file.

• EndLine: An integer specifying the last line to shift. EndLine defaults to the
last line of the file.

Here are some examples of ShiftLeft():

file = newfile();

-- Shift All Lines Left to the Next Tab Stop
file.shiftleft();

-- Shift lines 2 through 3 to the left by 5 columns
file.shiftleft(columns: 5, startline: 2, endline: 3);

ShiftRight() Document Method
The positional parameters are:

• Columns (integer)

• StartLine (integer)

Qedit Scripting Language User Manual Objects, Methods and Properties • 147

• EndLine (integer)

The return value is boolean.

This method shifts the specified lines right by a specific number of columns. See also
the "ShiftLeft() Document Method" on page 146.

ShiftRight() returns True if the shift is successful, otherwise it returns
False.

Here are the parameters to the ShiftRight() method:

• Columns. An integer specifying the number of columns by which the text
should be shifted. If this parameter is not specified or if it is -1, the line is shifted
to the next tab stop. Shift of a tab stop only works if there are tab characters in
the file (it does not work on equivalent spaces).

• StartLine: An integer specifying the first line to shift. StartLine defaults to
the first line of the file.

• EndLine: An integer specifying the last line to shift. EndLine defaults to the
last line of the file.

Here are some examples of ShiftRight():

file = newfile();

-- Shift All Lines Right to the Next Tab Stop
file.shiftright();

-- Shift Lines 2 through 3 right by 5 columns
file.shiftright(columns: 5, startline: 2, endline: 3);

Tabs() Document Method
The positional parameters are:

• SetAt (integer)

• SetEvery (integer)

• ClearAt (integer)

• ClearAll (boolean)

The return value is boolean.

This method sets and clears tab stops in a document. When you Close() a
document, the tab stops are not saved in the document itself. They are saved in your
personal document database. When you Open() the file again, the tab stops are set
based on the settings from the document database.

The purpose of the Tabs() method is to either:

• Set a tab stop at a specific column

• Set tab stops at a fixed interval e.g. every 5 columns

• Clear a tab stop at a specific column

• Clear all tab stops

Tabs() returns True if the operation is successful, otherwise it returns False.
There are four parameters to Tabs() and they are mutually exclusive i.e. you can
only specify one in a given call. Columns are numbered from one and match what
you see on the ruler bar.

148 • Objects, Methods and Properties Qedit Scripting Language User Manual

• SetAt: An integer that specifies a column number where a tab stop will be set.

• SetEvery: An integer that specifies tab stops at regular intervals.

• ClearAt: An integer that specifies a specific column where a tab stop should be
removed.

• ClearAll: A boolean that, if True, clears all tab stops in the file. Passing
False makes no sense and doesn't change any tab stops.

Column numbers start at 1. For most files, this number matches the number on the
Ruler bar. However, the Ruler bar for Cobol source files starts in column 7. It is
the first column where you can set a tab stop. This means that if you want to set a tab
stop in column 12, you have to use:

file.tabs(setat: 6);

If you want to set tab stops at regular interval, you can use the SetEvery keyword.
For example, on files where the first column is 1, coding

file.tabs(SetEvery:5);

sets tab stops at column 6, 11, 16, 21, etc. On a Cobol source file, the tab stops are at
column 12, 17, 22, etc.

In all cases, SetEvery does not clear existing tab stops, so it is usually good practice
to first call

file.tabs(ClearAll);

Here are some example calls to Tabs():

file = newfile();
-- Use the SetAt parameter to set a tab stop at column 6
file.tabs(setat: 6);

-- Use the ClearAt parameter to clear a single tab stop at column 5
file.tabs(clearat: 5);

-- Use the ClearAll parameter to clear all tab stops.
file.tabs(clearall: true);

-- Use the SetEvery parameter to set a tab stop every 6 (clear first)
file.tabs(clearall: true);
file.tabs(setevery: 6);

DateTime Objects
The Qedit for Windows DateTime object is used for all date handling. The DateTime
object stores dates and times in an internal format that supports dates from 1583 to
2583.

The date and time are treated separately within the object. But because all time
values must relate to a specific date, you cannot deal with times without first having
assigned a date to the DateTime object.

When the DateTime object is created, it is initialized with the PC's current date and
time.

Creating a DateTime Object
You create a DateTime object by calling the DateTime() application method as
in:

Qedit Scripting Language User Manual Objects, Methods and Properties • 149

theDate = datetime();

You can now start using the variable theDate to obtain DateTime properties or
invoke methods. For example, to get the year, month, and day you would use:

theYear = theDate.Year;
theMonth = theDate.Month;
theDay = theDate.Day;

To add one day to the date, you would do:

theDate.AddDays(1);

To format the date and time as a string, you would do something like:

currenttime = datetime();
timestamp = currenttime.fmtshortdatetime();

-- methods, not functions

You can also convert a DateTime object into a printable set of characters using the
String() built-in function, but it will be formatted as:

<Object: DateTime 10/01/1999 11:53:45 AM>

See "Insert a Signature or a Timestamp" on page 71 for a sample script that inserts
the current date and time into your file.

DateTime Constants
Some constants have been defined for DateTime objects. Note that these constants
are specific to DateTime objects and are not global. Therefore, you precede them
with the name of a DateTime object and a period.

Status Property Constants
The following constants are possible values for the DateTime.Status property.
Please note that there are few cases where you would ever need to actually check the
date status, since most DateTime objects are created by the system:

Name Numeric Value
StatusNone 1

StatusYearLow 2

StatusYearHigh 3

StatusMonthLow 4

StatusMonthHigh 5

StatusDayLow 6

StatusDayHigh 7

StatusInitFormat 8

StatusHourLow 9

StatusHourHigh 10

StatusMinuteLow 11

StatusMinuteHigh 12

StatusSecondLow 13

StatusSecondHigh 14

StatusMonthChar 15

150 • Objects, Methods and Properties Qedit Scripting Language User Manual

StatusDayChar 16

StatusYearChar 17

StatusDateInvalid 18

This is how you would check the status if you had to:

timestamp = datetime();
if (timestamp.status = timestamp.StatusNone)

result = dialog("this timestamp is okay!");
endif

DayOfWeek Property Constants
The following constants are the possible values for the Datetime.DayOfWeek
property:

Day Numeric Value
Sunday 1

Monday 2

Tuesday 3

Wednesday 4

Thursday 5

Friday 6

Saturday 7

Here is how you would check the day of the week using one of these constants:

timestamp = datetime();
if (timestamp.dayofweek = timestamp.Sunday)

result = dialog("Take the day off");
endif

DateTime Properties
The following are the properties of the Qedit datetime object.

Name Type Description
Year Integer 4-digit year

Month Integer Month number, 1 to 12

Day Integer Day of the month, 1 to 31

Hour Integer Hour of the day, local time, 0 to 23

Minute Integer Minute of the hour, 0 to 59

Second Integer Second of the minute, 0 to 59

GMTHour Integer GMT hour, 0 to 23

GMTMinute Integer GMT minute of the hour

GMTSecond Integer GMT second of the minute

DayOfWeek Integer Day of the week, 1 to 7

DayOfYear Integer Day of the year, 1 to 366

Status Integer Date validity

Qedit Scripting Language User Manual Objects, Methods and Properties • 151

For example, if you wanted to check whether today was in October, you would do:

timestamp = datetime();
if (timestamp.month = 10)

result = dialog("this is October");
endif

DateTime Methods
Here are the methods for manipulating DateTime objects:

AddDays() FmtShortDate() SetCurrent()

Compare() FmtShortDateTime() SetDateTime()

DaysBetween() FmtShortTime() SetGMTDateTime()

Adddays() DateTime Method
There is only one positional parameter:

• DaysToAdd (integer)

There is no return value.

This method adds a specified number of days to a DateTime object. There is only
one parameter to Adddays():

• DaysToAdd: An integer that is added. If the value is negative, it subtracts from
the date.

Here are some examples:

timestamp = datetime();
saveday = timestamp.day;

-- add 1 to today's date
timestamp.adddays(1);
result = dialog(string(timestamp.day));

-- subtract 1 from the revised date, should be back to today
timestamp.adddays(-1);
if (saveday = timestamp.day)

result = dialog("adddays worked in both directions.")
endif

Compare() DateTime Method
There is only one positional parameter:

• CompareDateTime (object)

The return value is an integer.

This method compares a source DateTime object with another such object and tells
you which is greater. The Compare() method returns one of three values:

Returned Value Explanation
-1 The source date is less than the

CompareDateTime parameter

152 • Objects, Methods and Properties Qedit Scripting Language User Manual

0 The source date is equal to the
CompareDateTime parameter

1 The source date is greater than the
CompareDateTime parameter

There is one parameter to the Compare() method:

• CompareDateTime: Another DateTime object which is to be compared with
the source object.

Here is an example:

timestamp = datetime();

anotherdate = datetime(); -- create a new object
anotherdate.adddays(1); -- increments the date

qedit.showscp = true; -- Display the Script Control Panel

compareresult = timestamp.compare(anotherdate);
if (compareresult=0)

writelog("The timestamps are identical");
else

if (compareresult=1)
writelog("The object is greater than the parameter.");

else
if (compareresult=-1)

writelog("The object is less than the parameter.");
else

result = dialog("Invalid value for compare result");
endif

endif
endif

DaysBetween() DateTime Method
There is only one positional parameter:

• CompareDateTime (object)

The return value is an integer.

This method computes the number of days between a source DateTime object and
another such object. It basically subtracts the source object from the
CompareDateTime parameter.

If DaysBetween() returns a positive integer, the CompareDateTime parameter
is greater than the source object. If the return value is negative, the parameter is less
than the source. If the result is zero, they are the same day but not necessarily the
same time.

There is one parameter to the DaysBetween() method:

• CompareDateTime: Another DateTime object which is to be compared with
the source object.

Here is an example of DaysBetween(). If you run it you should find that the
objects have 0 days between them:

Qedit Scripting Language User Manual Objects, Methods and Properties • 153

timestamp = datetime();
result = dialog("Wait a few seconds before getting another time");
anotherdate = datetime(); -- create a new object

qedit.showscp = true; -- Displays the Script Control Panel

writelog(string(timestamp.daysbetween(anotherdate)));
if (timestamp.daysbetween(anotherdate)) = 0

result = dialog("These are still the same day!");
endif

FmtShortDate() DateTime Method
There are no positional parameters and the return value is a string.

This method formats the date portion of a DateTime object into a string using the
formatting conventions of the local computer. This is typically MM/DD/YYYY. You
can change the format using the Regional Settings control panel in Windows.

FmtShortDate() returns a string and does not have any parameters.

Here is an example:

timestamp = datetime();

result = dialog("Today is " + timestamp.fmtshortdate());

FmtShortDateTime() DateTime Method
There are no positional parameters and the return value is a string.

This method formats the date and time into a string using the formatting conventions
of the local computer. This is typically MM/DD/YYYY HH:MM:SS AM. You can
change the format using the Regional Settings control panel in Windows.

FmtShortDateTime() returns a string and does not have any parameters.

Here is an example:

timestamp = datetime();

result = dialog("Date and time are " + timestamp.fmtshortdatetime());

FmtShortTime() DateTime Method
There are no positional parameters and the return value is a string.

This method formats the time portion into a string using the formatting conventions
of the local computer. This is typically HH:MM:SS AM. You can change the format
using the Regional Settings control panel in Windows.

FmtShortTime() returns a string and does not have any parameters.

Here is an example:

timestamp = datetime();

result = dialog("Now is " + timestamp.fmtshortTime());

SetCurrent() DateTime Method
There are no positional parameters and there is no return value.

This method sets the date and time of an object to the current date and time. It does
not change the computer's date and time! It simply changes the date value inside the
object.

154 • Objects, Methods and Properties Qedit Scripting Language User Manual

There are no parameters to SetCurrent().

Here is an example:

timestamp = datetime();
saveday = timestamp.day;

-- add 1 to today's date
timestamp.adddays(1);

-- reset to current date, should work unless midnight passed
timestamp.setcurrent();
if (saveday = timestamp.day)

result = dialog("this is back to today.")
endif

SetDateTime() DateTime Method
The positional parameters are:

• Year or YR (number)

• Month or MO (number)

• Day or DA (number)

• Hour or HR (number)

• Minute or MI (number)

• Second or SE (number)

The return value is boolean.

This method sets the date and time of an object to specified values. It does not
change the date or time of your PC! It simply changes the values inside the object.

The hour, minute, and second are assumed to be local time i.e., the time on your PC.
You do not have to specify both a date and a time in a single method call. You can
specify just the date or just the time. When setting the date, you must specify the
year, month, and day. When setting the time you must specify the hour, minute, and
second. You cannot set the time of an object that does not have a valid date.

SetDateTime() returns True if the operation is successful, otherwise it returns
False. There are six parameters to the SetDateTime() method:

Parameter Name Type
Year Integer

Month Integer

Day Integer

Hour Integer

Minute Integer

Second Integer

Here is an example:

Qedit Scripting Language User Manual Objects, Methods and Properties • 155

timestamp = datetime();
result = dialog("Now is " + timestamp.fmtshortdatetime());

-- Set the Date, leave the time
timestamp.SetDateTime(year: 1947, month: 6, day: 13);
result = dialog("Same time on birthday is " +

timestamp.fmtshortdatetime());

-- Set the Time, leave the Date unchanged
timestamp.SetDateTime(hour: 13, minute: 0, second:0);
result = dialog("Date and time of birth was " +

timestamp.fmtshortdatetime());

SetGMTDateTime() DateTime Method
The positional parameters are:

• Year or YR (number)

• Month or MO (number)

• Day or DA (number)

• Hour or HR (number)

• Minute or MI (number)

• Second or SE (number)

The return value is boolean.

This method sets the date and time of an object to specified values. The hour,
minute, and second are assumed to be GMT time i.e. the time in London, England,
not the time on your PC. It does not change the date or time of your system or the
host, only the values stored in the object.

You do not have to specify both a date and a time in a single method call. You can
specify just the date or just the time. When setting the date, you must specify the
year, month, and day. When setting the time you must specify the hour, minute, and
second. You cannot set the time of an object that does not have a valid date.

SetGMTDateTime() returns True if the operation is successful, otherwise it
returns False. There are six parameters to the SetGMTDateTime() method:

Parameter Name Type
Year Integer

Month Integer

Day Integer

Hour Integer

Minute Integer

Second Integer

Here is an example:

156 • Objects, Methods and Properties Qedit Scripting Language User Manual

timestamp = datetime();
result = dialog("Now is " + timestamp.fmtshortdatetime());

-- Set the GMT Date and time
timestamp.SetGMTDateTime(year: 1947, month: 6, day: 13,

hour: 13, minute: 0, second:0);

-- Show the local time, if you are in GMT+4 it should be 13-4=9
result = dialog("Date and time of birth was is " +

timestamp.fmtshortdatetime());

Connection Objects
Qedit provides ways to manage connection objects. These objects are used to control
host connections and all related attributes.

Creating a Connection Object
There are a few ways you can create a Connection object. You can explicitly create
one using the OpenConnection() application method. You don't have to open a
file to open a connection. If you already have a file opened, you can create a
connection object using the Connection document property.

Connection Properties
Here are the properties for Connection objects:

Name Type Description
HostCWD string Host current working

directory

HostGroupAccount string Group and account if the
CWD is an MPE group

HostOS string Name of the host operating
system

HostPID string Process ID of the connected
server process

MaxOpenFiles integer Maximum number of files
opened concurrently on this
connection

Name string Name of the connection

OpenCount integer Number of files currently
opened on this connection

ServerVersion string Version number of the
connected server

ShowBrowser boolean Show the directory browser
window

• HostCWD: A string property containing the current working directory (CWD)
using the absolute notation for that host. This property always contains a value
for UNIX hosts and MPE hosts with Posix support. The property value changes
as you navigate through the directory structure on that connection.

/home/clerk

Qedit Scripting Language User Manual Objects, Methods and Properties • 157

/usr/include/sys

/DEVACCT/SRC

• HostGroupAccount: A string property containing the group and account
names if this is a connection to an MPE host and the current working directory
is an MPE group. Otherwise, it is an empty string variable. The value changes as
you navigate through the account structure on that connection. The format is
group.account. For example:

SRC.DEVACCT

• HostOS: A string property containing the host operating system (OS).
Typically, this would be the OS name and version. The value remains the same
for the duration of a connection but might change if the OS on the host itself is
changed. Here are examples for an HP-UX and an MPE host:

HP-UX B.10.20

MPE/iX C.60.00

• HostPID: A string property showing the host process id (PID) for that instance
of the server. The value remains the same as long as the connection exists but it
can change if the connection is closed or you start a new Qedit session.
Although this is a string, a PID is typically a number.

• MaxOpenFiles: An integer property showing the maximum number of files
that can be opened concurrently on that connection. This information comes
from the server and can not be changed.

• Name: A string property showing the name of the connection. This is the name
originally used to establish the connection. The value remains the same
throughout the duration of the connection.

• OpenCount: An integer property showing the number of files currently opened
on that connection. The value changes as you open and close files.

• ServerVersion: A string property showing the version number of the Qedit
server. This value remains the same for the duration of the connection but might
change if the server program on the host is changed. Here are examples for a
UNIX and MPE server:

Qedit/UX (Version 4.8.10)

Qedit/iX (Version 4.8.10)

• ShowBrowser: A boolean property used to display or hide the directory
browser dialog box. It is the only property that can be changed explicitly. If set
to True, the dialog box is displayed. The directory listing is refreshed only the
first time the dialog box is enabled. To refresh the listing on subsequent calls,
you have to use the Refresh button. If set to False, the dialog box is hidden.

mpeconn = openconnection(connection: "Production MPE");
mpeconn.showbrowser = true; -- Display the Directory dialog box

To display all properties for a particular connection, you could use this script:

158 • Objects, Methods and Properties Qedit Scripting Language User Manual

uxconn = openconnection(connection: "Production UX");
if exists(uxconn) then

writelog ("UNIX Connection information");
writelog("Name =" + string(uxconn.name));
writelog("ServerVersion =" + string(uxconn.ServerVersion));
writelog("HostOS =" + string(uxconn.HostOS));
writelog("HostPID =" + string(uxconn.HostPID));
writelog("MaxOpenFiles =" + string(uxconn.MaxOpenFiles));
writelog("OpenCount =" + string(uxconn.OpenCount));
writelog("HostCWD =" + string(uxconn.HostCWD));
writelog("HostGroupAccount=" + string(uxconn.HostGroupAccount));
writelog("ShowBrowser =" + string(uxconn.ShowBrowser));

else
writelog("No ux connection");

endif

writelog(" ");
mpeconn = open(connection: "Production MPE");
if exists(mpeconn) then

writelog ("MPE Connection information");
writelog("Name =" + string(mpeconn.name));
writelog("ServerVersion =" + string(mpeconn.ServerVersion));
writelog("HostOS =" + string(mpeconn.HostOS));
writelog("HostPID =" + string(mpeconn.HostPID));
writelog("MaxOpenFiles =" + string(mpeconn.MaxOpenFiles));
writelog("OpenCount =" + string(mpeconn.OpenCount));
writelog("HostCWD =" + string(mpeconn.HostCWD));
writelog("HostGroupAccount=" + string(mpeconn.HostGroupAccount));
writelog("ShowBrowser =" + string(mpeconn.ShowBrowser));

else
writelog("No MPE connection");

endif

The script control panel would show the following information:

UNIX Connection information
Name = Production UX
ServerVersion = Qedit/UX (Version 4.8.10)
HostOS = HP-UX B.10.20
HostPID = 10920
MaxOpenFiles = 10
OpenCount = 0
HostCWD = /home/clerk
HostGroupAccount =
ShowBrowser = 0

MPE Connection information
Name = Production MPE
ServerVersion = Qedit/iX (Version 4.8.10)
HostOS = MPE/iX C.60.00
HostPID = 123
MaxOpenFiles = 10
OpenCount = 0
HostCWD = /FINANCE/GL
HostGroupAccount = GL.FINANCE
ShowBrowser = 0

Connection Methods
Here are the Connection methods:
ChangeCWD() GetDirectoryIterator()

ChangeCWD() Connection Method
The positional parameters are:

• Pathname (string)

Qedit Scripting Language User Manual Objects, Methods and Properties • 159

• Wildcard (string)

The return value is boolean.

To change the local CWD, see
the LocalCWD application
property.

This method is used to change to a different working directory or to display a file
subset. The value in Pathname has to be in the Posix notation, even on an MPE
host. The value can be an absolute or relative path. If you wish to go to a different
group on an MPE host but do not wish to use the Posix notation, enter a value with a
group name in the Wildcard parameter.

By default, Qedit displays all the files in the specified pathname. If you wish to see
only a subset, enter a value in the Wildcard parameter. The wildcard value must
follow the syntax of the corresponding host. For example, an asterisk on a UNIX
host or in the Posix namespace on an MPE host means one or more characters. To
specify the same thing in the MPE namespace of an MPE host, you would use an at-
sign. For details on how to use wildcards in the Directory dialog box, please refer to
the Qedit for Windows User Manual.

The ChangeCWD() method returns True if the operation is successful. Otherwise,
it returns False.

GetDirectoryIterator() Connection Method
The positional parameters are:

• Directory (string)

The return value is an iterator object.

This connection method only works with host directories. It is also available as an
application method to handle local directories.

This method returns an directory iterator object which contains information about all
the files and subdirectories in the specified directory. Each entry is a record with a
number of elements describing the file or subdirectory. For a detailed description of
each element, see "Host Directory Iterator" on page 161. For host directories, the
elements are:

• ConnectionName (string)

• Filecode (integer)

• Name (string)

• Path (string)

• OpenName (string)

• RecordLength (integer)

• Size (integer)

• ModificationTimestamp (date and time object)

• CanonicalType (string)

Individual entries can be accessed using a REPEAT statement.

160 • Objects, Methods and Properties Qedit Scripting Language User Manual

uxconn = openconnection("Production UX");
hostdir = uxconn.getdirectoryiterator("/home/clerk");

subdircount = 0;
filecount = 0;
repeat for direntry in localdir

if direntry.canonicaltype = "directory" then
subdircount = subdircount + 1;

else
filecount = filecount + 1;

endif
endrepeat

writelog("Number of subdirectories=" + string(subdircount));
writelog("Number of files=" + string(filecount));

The meaning of each parameter is:

• Directory: Retrieve the list of files and subdirectories stored at that location.

The GetDirectoryIterator() method is not recursive. This means that it
returns information on subdirectories in the requested directory but it does not go
down the subdirectories. If you need to see what is stored at other levels in the
directory tree, the script has to do it.

Iterator Objects
These objects are complex data structures created by a number of methods. Iterator
objects usually contain information about similar items. Each entry in the object
represents a single item and each entry is typically a record. Think of it as a list of
records. Unlike other objects described so far, iterator objects do not really have
properties and methods.

Currently, iterator objects are created with the GetDirectoryIterator()
application method (for local directories), the GetDirectoryIterator()
connection method (for host directories) and the
GetConnectionTemplateIterator() application method (for connection
templates).

Local Directory Iterator
A local directory iterator object is created by calling the
GetDirectoryIterator() application method. It can only deal with local
directories. It contains information on files and subdirectories stored in the directory
specified on the call. Each file or subdirectory has a corresponding record in the
object. Each record contains the following elements:

AccessTimestamp
This is a Datetime object containing the date and time when that file or subdirectory
was last accessed.

CanonicalType
This is a string giving the type of item described in this record. Possible values are:

• text: if the filename ends with ".txt"

• script: if the filename ends with ".qsl"

• program: if the filename ends with ".exe"

Qedit Scripting Language User Manual Objects, Methods and Properties • 161

• directory: if the entry is a subdirectory

The element contains an empty string if the file does not match any of these
definitions.

CreationTimestamp
This is a Datetime object containing the date and time when that file or subdirectory
was created.

ModificationTimestamp
This is a Datetime object containing the date and time when that file or subdirectory
was last modified.

Name
This is a string containing the name of the file or subdirectory. The current directory
itself contains a single dot, ".". The parent directory is identified with two dots, "..".

OpenName
This is a string containing the fully-qualified file or subdirectory name. Typically,
this is the Path element concatenated to the Name element.

Path
This is a string containing the path for the file or subdirectory. Typically, this is the
same as the directory specified in the call parameter.

Size
This a numeric variable of type float showing the number of bytes in the file. For
subdirectories, this element typically contains 0.

Host Directory Iterator
A host directory iterator object is created by calling the
GetDirectoryIterator() connection method. It can only deal with host
directories. It contains information on files and subdirectories stored in the directory
specified on the call. Each file or subdirectory has a corresponding record in the
object. Each record contains the following elements:

CanonicalType
This is a string giving the type of item described in this record. Possible values are:

• qedit: if the file is a Qedit workfile.

• cobol: if the file is a Cobol source file. To see how the server identifies these,
refer to the Qedit for Windows User Manual.

• directory: if the entry is a subdirectory

The element contains an empty string if the file does match not any of these
definitions.

The above values are available on MPE hosts. For UNIX hosts, only "directory" is
available.

162 • Objects, Methods and Properties Qedit Scripting Language User Manual

ConnectionName
This is a string containing the name of the host connection where the directory is
located.

FileCode
This is numeric variable of type integer containing the file code associated with the
file. This only applies to MPE hosts. For UNIX hosts, the file code is always set to 0.
For a comprehensive list of valid file codes, refer to "Appendix B - File Types" in
the Qedit for Windows User Manual.

ModificationTimestamp
This is a Datetime object containing the date and time when that file or subdirectory
was last modified. The date and time are automatically adjusted for different time
zones. That is the information in the iterator object always appears as local time even
though the file might actually be on host computer 3 time zones away.

Name
This is a string containing the name of the file or subdirectory.

On UNIX connections, the current directory itself contains a single dot, ".". The
parent directory is identified with two dots, "..".

On both UNIX and MPE connections, directory names are terminated with a slash
"/".

OpenName
This is a string containing the fully-qualified file or subdirectory name. Typically,
this is the ConnectionName followed by a colon concatenated to Path element
and the Name element.

Path
This is a string containing the path for the file or subdirectory. Typically, this is the
same as the directory specified in the call parameter.

RecordLength
This is a numeric variable of type integer containing the record length for the file.

On UNIX hosts, the value represents the number of bytes allowed in each record.
Because this concept is foreign, the value is always 0.

On MPE hosts, if the value is negative, it indicates the number of bytes allowed in
each record. If the value is positive, it indicates the number of words (2-byte)
allowed in each record.

Size
This a numeric variable of type integer showing the size of the file. On UNIX hosts,
it represents the number of bytes. On MPE hosts, it represents the number of records.

Connection Template Iterator
A connection template iterator object is created by calling the
GetConnectionTemplateIterator() application method. It contains

Qedit Scripting Language User Manual Objects, Methods and Properties • 163

information on all connections currently defined in the connection template file.
Each connection has a corresponding ConnectionTemplate object in the iterator
object.

ConnectionTemplate Objects
A ConnectionTemplate object contains all information required to establish a
connection to a host. These objects can be created
(NewConnectionTemplate() application method), retrieved
(FindConnectionTemplate() and
GetConnectionTemplateIterator() application methods) and deleted
(DeleteConnectionTemplate() application method).

ConnectionTemplate Properties
ConnectionTemplate objects have the following properties:

• Name: A string containing the name of the connection.

• HostName: A string containing the host name or IP address of the host to
conect to.

• LogonInformation: A record containing the information required for a
successful login.

• ColorScheme: A string containing the name of a color scheme to be used as
the default.

• Autologon: A boolean value to indicate whether Qedit should establish this
connection automatically at startup.

New values can be assigned to the HostName, ColorScheme and Autologon
properties. If you wish to change the name of the connection, you have to use the
Rename() ConnectionTemplate method. To change any of the elements in the
LogonInformation property, you have to use of the
SetLogonInformation() ConnectionTemplate method.

LogonInformation Property
The logon information is stored in a record variable called LogonInformation. The
elements found in the record vary based on the host type. ConnectionType is the
only common element to both types. The element contains a string and can be only
one of two possible values: Unix or MPE. If ConnectionType is Unix, other
elements in the record are:

• UserName: A string containing a user ID.

• Password: A string containing the password for the specified user ID. For
security reasons, you can not see the current password. Qedit always returns a
null string.

• InitialDirectory: A string containing the initial directory to be used at logon.

You can not assign a value directly to individual elements in that record. You have to
use the SetLogonInformation() method.

If ConnectionType is MPE, other elements in the record are:

164 • Objects, Methods and Properties Qedit Scripting Language User Manual

• Hello: A string containing the information normally provided in a Hello
command.

• UserPass: A string containing the user password for the username specified in
the Hello string. For security reasons, you can not see the current password.
Qedit always returns a null string.

• GroupPass: A string containing the password for the group specified in the
Hello string. For security reasons, you can not see the current password. Qedit
always returns a null string.

• AccountPass: A string containing the password for the account specified in
the Hello command. For security reasons, you can not see the current
password. Qedit always returns a null string.

• SessionPass: A string containing the password for the sessionname specified
in the Hello string. For security reasons, you can not see the current password.
Qedit always returns a null string.

• Firewall: A boolean indicating whether Qedit should connect using the normal
connection procedure or using the Firewall Protocol. A zero value or False
indicates a normal connection. Any non-zero value or True indicates the
Firewall Protocol.

ConnectionTemplate Methods
The name of a connection can not be changed with a simple assignment statement. It
can only be changed using the Rename() method. ConnectionTemplate objects
have the login information stored in a record variable. You can not assign a value
directly to individual elements in that record. You have to use the
SetLogonInformation() method.

Rename() ConnectionTemplate Method
The method has only one parameter:

• NewName (string)

Because a connection name has to follow certain rules, you have to use the
Rename() ConnectionTemplate method to change a connection name. The method
ensures the new name adheres to the rules and that the name does not already exist.

findconn = findconnectiontemplate("Prod UX");
if typeof(findconn) = qedit.typeundefined then

writelog("Connection does not exist");
else

newname = "Production UX";
result = findconn.rename(newname);

endif

SetLogonInformation() ConnectionTemplate Method
This method accepts a record that adheres to the LogonInformation property
definition. It replaces the current information with the updated version. If you wish
to be prompted for one or more passwords, enter a question mark "?" instead of the
actual password.

Qedit Scripting Language User Manual Objects, Methods and Properties • 165

foundconn = findconnectiontemplate("Prod MPE");
newlogon = foundconn.logoninformation;
newlogon.hello = "clerk,user.acct"; -- Change the Hello string
newlogon.userpass = "NewPass"; -- Change the user password
newlogon.acctpass = "?"; -- Prompt for account password
foundconn.setlogoninformation(newlogon); -- Update the connection

SetlogonInformation() does not report any error if you mix elements for
different host types. Extra elements are simply ignored. For example, if you retrieved
logon information for a UNIX connection and assign a value to an MPE host
element, the new element is simply added to the record but does not affect the
operation. In the example below, none of the UNIX elements have been changed so
the connection is still the same. The script executes without any error.

foundconn = findconnectiontemplate("Prod UX"); -- UNIX host
newlogon = foundconn.logoninformation;
newlogon.hello = "clerk,user.acct"; -- Hello string is ignored
newlogon.userpass = "NewPass"; -- User password is ignored
foundconn.setlogoninformation(newlogon); -- Update the connection

Properties and Methods Cross-Reference
The table below has a list of all properties and methods provided by Qedit. Entries in
the table are sorted by their name. This should make it easier for you to identify the
exact nature of a syntax element in a script.

For detailed information, see

• "Application Constants" on page 101

• "Application Methods" on page 105

• "Document Properties" on page 118

• "Document Methods" on page 123

• "DateTime Properties" on page 150

• "DateTime Methods" on page 151

• "Connection Properties" on page 156

• "Connection Methods" on page 158

• "Exception Handlers" on page 18

Name Type Description
Activate Document method Make a document the active

window

ActiveFile Application property Name of the currently active
document

AddDays DateTime method Add a number of days to a
date

AutoIndent Document property Auto-indent option

Autologon Connection template
property

Connection autologon
setting

Autopush Application property Automatically push caret
location on search option

AutoWorkfilePost Application property Automatically post Qedit

166 • Objects, Methods and Properties Qedit Scripting Language User Manual

workfiles option

CacheMaxLines Document property Maximum number of lines
allowed in the cache

CaretAllowedOutsideText Application property Caret allowed in undefined
areas option

ChangeCWD Connection method Change to a different
directory

CheckServerTimestamps Application property Compare timestamps before
overwriting on server option

Close Document method Close a document

ColorScheme Connection template
property

Default color scheme for the
connection

Compare DateTime method Compare 2 dates

ConnectionName Document property Name of the connection
where the file resides

ConvertTabsToSpaces Document property Convert tabs to spaces
option

Copy Document method Copy the selection to the
clipboard

Cut Document method Cut the selection from the
document and put in the
clipboard

DateTime Application method Retrieves the current date
and time

Day DateTime property Day of the month (0 to 31)

DayOfWeek DateTime property Day of the week (1 to 7)

DayOfYear DateTime property Day of the year (1 to 366)

DaysBetween DateTime method Calculates the number of
days between 2 dates

Delete Document method Remove the selection

DeleteConnectionTemplate Application method Remove a connection
template object

Detab Document method Replace tab characters with
spaces

DisplayDetabbedColumn Document property Display detabbed column
coordinates option

Entab Document method Replace spaces with tab
characters

Exit Application method Terminates Qedit for
Windows

File Application property List of opened files

Find Document method Search for a string

FindAll Document method Display all occurrences of a
string in the current file and
related files (Include, Use,
COBOL Copy)

FindConnectionTemplate Application method Retrieve information and
create a connection template
object

Qedit Scripting Language User Manual Objects, Methods and Properties • 167

FindOpenFile Application method Search for a document
among all currently opened
documents

FmtShortDate DateTime method Format date in short form

FmtShortDateTime DateTime method Format date and time in
short form

FmtShortTime DateTime method Format time in short form

FullFileName Document property Fully-qualified name of the
opened file

GetConnectionTemplateIterator Application method Create a connection template
iterator object

GetDirectoryIterator Application method Create a local directory
iterator object

GetDirectoryIterator Connection method Create a host directory
iterator object

GetSelectedText Document method Retrieve the selection

GetText Document method Retrieve one or more lines

GMTHour DateTime property GMT hour (0 to 23)

GMTMinute DateTime property GMT minute (0 to 59)

GMTSecond DateTime property GMT second (0 to 59)

HostCWD Connection property Current working directory
on the connection

HostGroupAccount Connection property Current working group and
account on an MPE
connection

HostName Connection template
property

Host name for the
connection

HostOS Connection property Host operating system name
and version

HostPID Connection property Current server process id

HostCommand Application method Execute host command

HostCommandAbort Application method Stop host command
execution

HostCommandStatus Application method Check host command status

Hour DateTime property Hour, local time (0 to 23)

Insert Document method Insert new text

InsertColumn Document method Insert text at a specific
column

IsModified Document property File has been modified

IsNew Document property File is new and has not been
named yet

IsOnHost Document property File is on a host

IsQedit Document property File is Qedit workfile

IsReadOnly Document property File has been opened with
read-only

IsSaveable Document property File can be saved

KeepTrainlingBlanks Document property Preserve trailing spaces in
the file option

168 • Objects, Methods and Properties Qedit Scripting Language User Manual

LastFoundColumn Document property Starting column of the
matched string

LastFoundLength Document property Number of characters in the
matched string

LastFoundLine Document property Line number where the
matched string has been
found

LineCount Document property Number of lines in the file

LinesTruncated Document property Number of lines truncated
during a Paste or Insert
operation

LiveScrolling Application property Use live scrolling for server
files option

LoadScript Application method Loads a script in the
environment

LogonInformation Connection template
property

Logon information e.g. user
ID, passwords

MaxOpenFiles Connection property Maximum number of
concurrently opened files

Minute DateTime property Minute, local time (0 to 59)

Month DateTime property Month (1 to 12)

MPEServerName Application property MPE Server Name

Name Connection property Name of the connection

Name Connection template
property

Name of the connection

NewConnectionTemplate Application method Create a new connection
template object

NewFile Application method Creates a new file

Open Application method Opens an existing file

OpenConnection Application method Open a new connection

OpenConnections Application property List of opened connections

OpenCount Connection property Number of currently opened
files on the connection

OriginalCurrentLine Document property Current line number at the
time of the last close

Overwrite Application property Insert / overwrite mode

Paste Document method Paste the contents of the
clipboard

PrintOnHost Document method Copy the file on a host
printer

PrintOnLocal Document method Copy the file on a local
printer

RecordLength Document property Maximum line length
allowed in the file

ReleaseOnClose Application property Close connections with no
open files option

Rename Connection template method Change the name of a
connection template object

Qedit Scripting Language User Manual Objects, Methods and Properties • 169

Save Document method Save the changes

SaveAs Document method Save the file with a different
name or location

Second DateTime property Second, local time (0 to 59)

Select Document method Select some text

Selection Document property Coordinates of the current
insertion point

ServerVersion Connection property Version of the currently
running server

SetCurrent DateTime method Set object to current system
local time

SetDateTime DateTime method Set object to specified local
date and time

SetGMTDateTime DateTime method Set object to specified GMT
date and time

SetLogonInformation Connection template method Change logon information
for a connection template
object

SetWidth Document method Change the maximum line
length of a document

ShellCommand Application method Execute a command in the
Windows 95/NT shell

ShiftLeft Document method Shift text to the left

ShiftRight Document method Shift text to the right

ShowBrowser Connection property Display or hide Directory
browser dialog box

ShowSCP Application property Display or hide Script
Control panel dialog box

Status DateTime property Date validity

Tabs Document method Set or clear tab stops

Typefloat Application constant Float data type

Typeinteger Application constant Integer data type

Typeobject Application constant Object data type

Typerecord Application constant Record data type

Typestring Application constant String data type

Typeundefined Application constant Undefined data type

UnloadScript Application method Removes a loaded script
from the environment

UseRulerBar Application property Open files with a ruler bar
option

WorkFilename Document property Name of the Qedit workfile
used

Year DateTime property Four-digit year

Qedit Scripting Language User Manual Error Messages • 171

Error Messages

Handling Errors
QSL can detect and report all kinds of errors. Most of these errors are critical and
cause Qedit to stop script execution. However, you can write smart scripts to
intercept errors and perform custom operations under certain conditions. This is done
using TRY/RECOVER blocks. A TRY block returns information in record-type
format. One of the elements in that record is the error number. That's probably the
most convenient way to check for a specific error condition. See "Exception
Handlers" on page 18 and "Try and Recover" on page 91.

Error Numbers
The following are the Qedit for Windows error numbers and the corresponding
constant name:

Description Numeric Value
ErrorDivisionByZero 200

ErrorRepeatByZero 201

ErrorSubscriptOutOfBounds 202

ErrorUnknownProperty 203

ErrorUnknownMethod 204

ErrorImproperCoordinate 205

ErrorInsertNotAtPoint 206

ErrorNameRequiredForSave 207

ErrorLineNumberOutOfRange 208

ErrorColumnNumberOutOfRange 209

ErrorSelectionIsEmpty 210

ErrorDomainError 211

ErrorModuloByZero 212

ErrorEditError 213

ErrorNonExistentFile 214

ErrorFileBusy 215

172 • Error Messages Qedit Scripting Language User Manual

ErrorDuplicateFileName 216

ErrorFileOpenFailed 217

ErrorUserSpecifiedError 218

ErrorUnspecifiedUserError 219

ErrorTimeout 220

ErrorInvalidConnection 221

ErrorCannotPrintLocalOnHost 222

ErrorNoLocalPrinter 223

File Errors
When trying to deal with file-related errors, you have to be aware of the file type and
where it resides. There are cases where QSL reports different error numbers for
similar types of problems. For example, if a local file does not exist, Qedit reports
ErrorNonExistentFile. If a host file does not exist, Qedit reports
ErrorFileOpenFailed.

Qedit Scripting Language User Manual Appendix A - Earlier Highlights • 173

Appendix A - Earlier Highlights

Overview of Appendix A - Earlier Highlights
Here are some of the changes and enhancements made in earlier versions of Qedit
for Windows.

Highlights in Version 5.0.10
• The MPE server now returns the path information with a trailing slash when

filling out a request from a GetDirectoryIterator() connection method.

• Temporary files can be created with the DiscardOnClose argument of the
NewFile() application method. If set to true, Qedit does not ask for save
confirmation when the file is closed.

Highlights in Version 5.0
• A number of methods are available to manage connection templates. You can

create, modify or delete connection templates directly from a script. Application
methods are NewConnectionTemplate(),
DeleteConnectionTemplate(), FindConnectionTemplate() and
GetConnectionTemplateIterator(). These methods work with
ConnectionTemplate objects.

• Three new application methods support execution of host commands . The
methods are: HostCommand(), HostCommandStatus() and
HostCommandAbort().

• The DOSCommand() application method allows execution of local programs
on your PC. This method offers synchronous and asynchronous execution
modes.

• Directory iterator objects can now be created with the
GetDirectoryIterator() methods. These objects allow you to get
information on files and subdirectories within a specific directory. An iterator
for a local directory is retrieved using the GetDirectoryIterator()
application method. A host iterator is retrieved using the
GetDirectoryIterator() connection method.

• The FindAll() document method finds all occurrences of a string in a file. It
has an option to scan Include files, Use files or COBOL Copy libraries in a

174 • Appendix A - Earlier Highlights Qedit Scripting Language User Manual

single operation. This method offers great performance on host files as the
search is entirely done by the server. Only the matching lines are sent back to
the Qedit client.

• There are six scripts in the Robelle script library. Five of these scripts are
automatically loaded when Qedit starts: Sortlines, ListAll, ListInclude,
ListUse and ListCopy. The sixth script, MPECompile, can be loaded
manually.

• The Save compiled script command on the Script menu saves scripts in
compiled form. These scripts are known as private scripts and can only be
executed.

Qedit Scripting Language User Manual Glossary of Terms • 175

Glossary of Terms

JCW
See Job Control Word

Job Control Word
(JCW) System variables used to pass information about process execution.
Typically, these are used to indicates success or failure. They can be used for other
purposes as defined by the application.

Asynchronous
Asynchronous execution means that the script can start a statement or task and
immediately skip to the next. It does not wait for the task to complete. See
Synchronous.

Autoload
When Qedit starts, it scans all the scripts in preconfigured directories. All
subroutines in these scripts can now be called as methods. On Command statements
add commands to the Script menu.

CanonicalType
Element returned in an entry inside iterator objects. It's a string that describes the
type of current entry.

Current working directory
(CWD) Directory where Qedit is currently working out of. If a file name is not
qualified, Qedit assumes the file resides there.

CWD
See Current Working Directory

176 • Glossary of Terms Qedit Scripting Language User Manual

Method
Functions associated with an object. A method allows manipulation of the object's
properties.

Object
Piece of information that makes up an application like Qedit. Objects have properties
(attributes) and methods (functions).

Properties
Object attributes. Properties are associated with an object. They describe the object.

SCP
See Script Control Panel

Script Control Panel
(SCP) Actually refers to the Script Control dialog box. This dialog allows the user to
control the execution of a script. It can be started, paused, stopped or executed one
statement at a time.

Synchronous
Synchronous execution means that the script waits for the completion of a statement
or task before moving on to the next. See Asynchronous.

Qedit Scripting Language User Manual Index • 177

Index

Symbols
' (apostrophe) string delimiter 6
-- (double-hypen) in-line comments 5
- (minus sign) arithmetic operator 10
(quote) string delimiter 6
* (asterisk) Arithmetic operator 10
** (double-asterisk) arithmetic operator 10
/ (slash) arithmetic operator 10
?? (double question marks) escape sequence 6
[] (square brackets) subscript 11
+ (plus sign) arithmetic operator 10
+ (plus sign) string operator 11
< (less than) comparison operator 12
<< (double-less-than) multi-line comments 5
= (equal sign) comparison operator 12
> (greater than) comparison operator 12
>> (double-greater-than) multi-line comments 5

A
Abort host command 47
ABS function 93
AccessTimestamp

local iterator 158
ACOS function 93
ACTIVATE method 121
ADDDAYS method 149
Adding to a list 11
Addition 10
AND operator 10
Application

methods 103
properties 101

Application object 31
Arguments

DOSCOMMAND 104
SHELLCOMMAND 115

Arithmetic
expressions 10

operators 10
ASCII codes 6
ASIN function 93
Associated files 116
Asynchronous execution

DOS 105
host commands 109

At
INSERT 136

ATAN function 94
AtColumn

INSERTCOLUMN 138
AUTOLOAD directory 26
Autologon

NEWCONNECTIONTEMPLATE 112

B
Backwards

FIND 127
Boolean 10

expressions 10
Boolean application constants 100
BREAK statement 86
BUTTON option 56, 90

C
CALL statement 18, 86
Cancel button, dialog 57
CanonicalType

host iterator 159
local iterator 158

Caret only 61
CEIL function 94
ChangeCWD method 63
CHANGECWD method 156
Changing directory 156
CHARACTER function 90
Character set 4
ClearAll

GUIDES 135
TABS 145

ClearAt
GUIDES 135
TABS 145

Close a file 32
CLOSE method 122
Cobol

Copylib 100, 132
guides 136
tab stops 146

CODE function 90
ColorScheme

NEWCONNECTIONTEMPLATE 112
Column

178 • Index Qedit Scripting Language User Manual

DELETE 123
GETTEXT 134
SELECT 141

Columns
SHIFTLEFT 144
SHIFTRIGHT 144

Command
COMPILE 53
CONTROL PANEL 53
HOSTCOMMAND 108
MANAGE SCRIPTS 53
RUN 53
SAVE COMPILED SCRIPT 3

Command line
execute and terminate 22
execute from DOS 22
execute only 22
prevent Autoload 22

CommandName
DOSCOMMAND 104

Commands
external 104, 116
host 43, 44

Comments
in-line 5
multi-lines 5

COMPARE method 149
CompareDateTime

COMPARE 149
DAYSBETWEEN 150

Comparison operators 12
COMPILE command 53
Compiled scripts 85
Compiling MPE 82
Concatenation 11
Condition evaluation 11, 66
Conditions 10, 14
Connection

create 112
delete 104
DELETECONNECTIONTEMPLATE 104
find 105
FINDCONNECTIONTEMPLATE 105
FINDOPENFILE 106
GETDIRECTORYITERATOR 107
HOSTCOMMAND 108
list 107, 160
LOADSCRIPT 111
logon information 162
NEWCONNECTIONTEMPLATE 112
NEWFILE 112
OPEN 113
OPENCONNECTION 115
properties 154
rename 162

Connection templates 48

copy 50
create 49
delete 49
find 48
list 50

ConnectionName
host iterator 160

ConnectionTemplate
DELETECONNECTIONTEMPLATE 104

ConnectionTemplate properties 161
Constants

boolean 100
data types 99
DATETIME 147
ErrorCannotPrintLocalOnHost 169
ErrorColumnNumberOutOfRange 169
ErrorDivisionByZero 169
ErrorDomainError 169
ErrorDuplicateFileName 169
ErrorEditError 169
ErrorFileBusy 169
ErrorFileOpenFailed 169
ErrorImproperCoordinate 169
ErrorInvalidConnection 169
ErrorLineNumberOutOfRange 169
ErrorModuloByZero 169
ErrorNoLocalPrinter 169
ErrorNonExistentFile 169
ErrorNotAtPoint 169
ErrorRepeatByZero 169
ErrorRequiredForSave 169
ErrorSelectionIsEmpty 169
ErrorSubscriptOutOfBounds 169
ErrorTimeout 169
ErrorUnknownMethod 169
ErrorUnknownProperty 169
ErrorUnspecifiedUserError 169
ErrorUserSpecifiedError 169
Friday 148
Language 100
Line termination 100
LineTerminationDOS 100
LineTerminationMacintosh 100
LineTerminationUnix 100
Monday 148
named 100
QeditLanguageCC 100
QeditLanguageCOBFREE 100
QeditLanguageCOBOL 100
QeditLanguageCOBOLX 100
QeditLanguageCPP 100
QeditLanguageDATA 100
QeditLanguageFTN 100
QeditLanguageJOB 100
QeditLanguagePASCAL 100
QeditLanguagePASCX 100

Qedit Scripting Language User Manual Index • 179

QeditLanguagePH 100
QeditLanguageRPG 100
QeditLanguageSPL 100
QeditLanguageTEXT 100
Saturday 148
SearchCopylib 100
SearchFile 100
SearchInclude 100
SearchReferenced 100
SearchUse 100
StatusDateInvalid 147
StatusDayChar 147
StatusDayHigh 147
StatusDayLow 147
StatusHourHight 147
StatusHourLow 147
StatusInitFormat 147
StatusMinuteHigh 147
StatusMinuteLow 147
StatusMonthChar 147
StatusMonthHigh 147
StatusMonthLow 147
StatusNone 147
StatusSecondHigh 147
StatusSecondLow 147
StatusYearChar 147
StatusYearHigh 147
StatusYearLow 147
Sunday 148
Thursday 148
Tuesday 148
typeFloat 99
typeInteger 99
typeObject 99
typeRecord 99
typeString 99
typeUndefined 99
Wednesday 148

Control characters 6
Control execution 53
Control panel 53
CONTROL PANEL command 53
Control panel, display 54
COPY method 34, 122
COS function 94
Create a file 31
CreationTimestamp

local iterator 159
Cursor position 61
Customer scripts directory 22
CUT method 34, 123
CWD

changing host 40
changing local 40
querying local 40
queryng host 40

D
Da

SETDATETIME 152, 153
Data type 5

checking 66
Data types 99
DateTime constants 147
DATETIME method 103, 147
DATETIME methods 149
DATETIME object 146
DATETIME properties 148
Day

SETDATETIME 152, 153
DAYSBETWEEN method 150
DaysToAdd

ADDDAYS 149
Debugging 56

infinite loop 60
invisibles 60
script changes 59
variable type 59

DELETE method 33, 124
DELETECONNECTIONTEMPLATE method 104
DETAB method 126
DeviceName

PRINTONHOST 139
DIALOG function 56, 90
Directory

GETDIRECTORYITERATOR 108, 157
Directory iterator 41
Directory, changing 156
DiscardChanges

CLOSE 122
DiscardOnClose

NEWFILE 112
Display message 56
Division 10
Division by zero 10
Document methods 121
Document properties 116
DOS

asynchronous execution 105
synchronous execution 105

DOSCOMMAND
method 104

DOWNSHIFT function 91
DOWNSHIFT method 39
Dynamic objects 41

E
End

DELETE 124
GETTEXT 134
SELECT 141

180 • Index Qedit Scripting Language User Manual

END option 61
EndColumn

DELETE 124
GETTEXT 134
SELECT 141

EndLine
DELETE 123
DETAB 126
ENTAB 126
FIND 127
FINDALL 130
GETTEXT 134
INSERTCOLUMN 138
PRINTONHOST 139
PRINTONLOCAL 140
SELECT 141
SHIFTLEFT 144
SHIFTRIGHT 145

ENTAB method 126
ENTEREDTEXT option 56, 90
EntireFile

FIND 127
Error checking 17, 169
ERROR statement 86
ErrorCannotPrintLocalOnHost 169
ErrorColumnNumberOutOfRange 169
ErrorDivisionByZero 169
ErrorDomainError 169
ErrorDuplicateFileName 169
ErrorEditError 169
ErrorFileBusy 169
ErrorFileOpenFailed 169
ErrorImproperCoordinate 169
ErrorInvalidConnection 169
ErrorLineNumberOutOfRange 169
ErrorModuloByZero 169
ErrorNoLocalPrinter 169
ErrorNonExistentFile 169
ErrorNotAtPoint 169
ErrorRepeatByZero 169
ErrorRequiredForSave 169
ErrorSelectionIsEmpty 169
ErrorSubscriptOutOfBounds 169
ErrorTimeout 169
ErrorUnknownMethod 169
ErrorUnknownProperty 169
ErrorUnspecifiedUserError 169
ErrorUserSpecifiedError 169
Escape sequences 6
Evaluating conditions 11, 66
Event handlers 13
EXISTS function 91
EXIT method 105
Exponentiation 10
Exponentiation operator 93
Expression, arithmetic 10

Expression, boolean 10
Extended characters 7
Extension, filename 3
External commands 104, 116

F
File

close 32
create 31
errors 170
open 32
rename 32
save 32

FileCode
host iterator 160

Filename
LOADSCRIPT 111
OPEN 113
SAVEAS 141

FillWithSpaces
DELETE 124

Find
pattern 38
regular expression 38
string 38

FIND method 34, 127
FINDALL method 130
FINDCONNECTIONTEMPLATE method 105
FINDOPENTIME method 106
FLOOR function 94
FMTSHORTDATE method 151
FMTSHORTDATETIME method 151
FMTSHORTTIMEmethod 151
ForceOverwrite

CLOSE 122
SAVEAS 141

ForceUnnumbered
OPEN 113

FP function 94
FromTemplate

NEWCONNECTIONTEMPLATE 112
Function

POS 12
Functions

ABS 93
ACOS 93
ASIN 93
ATAN 94
CEIL 94
CHARACTERS 90
CODE 90
COS 94
DIALOG 56, 90
DOWNSHIFT 39, 91
EXISTS 91

Qedit Scripting Language User Manual Index • 181

FLOOR 94
FP 94
INTEGER 91, 94
IP 95
LENGTH 91
LN 95
LOG 95
LTRIM 91
MOD 95
NUM 91
POS 39, 92
RAND 95
RANDSEED 95
RTRIM 92
SIN 95
SQRT 96
STRING 92
TAN 96
TRIM 92
TYPEOF 59, 66, 92
UPSHIFT 39, 93
WRITELOG 59

G
GETCONNECTIONTEMPLATEITERATOR method

107
GETDIRECTORYITERATOR method 107, 157
GETSELECTEDTEXT method 38, 133
GETTEXT method 35, 134
Global variables 13
Guides 136
GUIDES method 135

H
Hexadecimal value 6
Highlights 2

version 5.0 171
version 5.0.10 171

Host
NEWCONNECTIONTEMPLATE 112

Host commands 43
$? 44
aborting 47
asynchronous execution 46, 109
configuration 43
environment 43
execution 44, 108
JCW 44
QhostResult 45
redirection 45
results 44
status 46
synchronous execution 46, 109
terminal 43

UNIX signal 44
HOSTCOMMAND method 108
HOSTCOMMANDABORT method 109
HOSTCOMMANDSTATUS method 110
HostCWD

changing 40
querying 40

Hour
SETDATETIME 152, 153

Hr
SETDATETIME 152, 153

I
Identifiers 5
IF statement 14, 87
IgnoreCase

FIND 127
FINDALL 130

IgnoreErrors
CLOSE 122

Include files 100, 131
INSERT method 33, 136
INSERTCOLUMN method 138
INTEGER function 91, 94
Interrupt loop 86
Invisible characters display 60
INVOKEstatement 87
IP function 95
Iterator

connection template 50
host directory 42
local directory 42
object 158
using 41, 63, 78

K
Keywords 4

L
Language application constants 100
LASTFOUNDxxxx properties 61
LeftColumn

FIND 127
FINDALL 130

LENGTH function 91
Line

DELETE 123
GETTEXT 133
INSERTCOLUMN 138
SELECT 141

Line termination application constants 100
LineTerminationDOS 100
LineTerminationMacintosh 100

182 • Index Qedit Scripting Language User Manual

LineTerminationUnix 100
List

adding element 11
constant 7
initialization 8
named value 7

List text 81
LIST type 7
ListCopy script 81
ListInclude script 81
Lists

number of elements 91
Listuse script 81
LN function 95
Load script, manual 27
LOADSCRIPT method 111
LocalCWD

changing 40
querying 40

LocalCWD property 63
LOG function 95
Log window 59
Log, messages 59
LogonInformation

NEWCONNECTIONTEMPLATE 112
SETLOGONINFORMATION 162

LTRIM function 91

M
MANAGE SCRIPTS command 53
Manage scripts dialog 27
Matches

FINDOPENFILE 106
Message log 59
Method 9, 97

ChangeCWD 63
Methods

ACTIVATE 121
ADDDAYS 149
application 103
CHANGECWD 156
CLOSE 122
COMPARE 149
COPY 34
cross-reference 163
CUT 34, 123
DateTime 149
DATETIME 103, 147
DAYSBETWEEN 150
DELETE 33
DELETE 124
DELETECONNECTIONTEMPLATE 104
DETAB 126
document 121
DOSCOMMAND 104

ENTAB 126
EXIT 105
FIND 34, 38, 127
FINDALL 130
FINDCONNECTIONTEMPLATE 105
FINDOPENFILE 106
FMTSHORTDATE 151
FMTSHORTDATETIME 151
FMTSHORTTIME 151
GETCONNECTIONTEMPLATEITERATOR 107
GETDIRECTORYITERATOR 107, 157
GETSELECTEDTEXT 38, 133
GETTEXT 35, 134
GUIDES 135
HOSTCOMMAND 108
HOSTCOMMANDABORT 109
HOSTCOMMANDSTATUS 110
INSERT 33, 136
INSERTCOLUMN 138
LOADSCRIPT 111
NEWCONNECTIONTEMPLATE 112
NEWFILE 113
OPEN 114
OPENCONNECTION 115
PASTE 34, 139
PRINTONHOST 140
PRINTONLOCAL 140
RENAME 162
SAVE 140, 143
SAVEAS 141
SELECT 36, 141
SETCURRENT 151
SETDATETIME 152
SETGMTDATETIME 153
SETLOGONINFORMATION 162
SETWIDTH 144
SHELLCOMMAND 116
SHIFTLEFT 144
SHIFTRIGHT 145
TABS 145
UNLOADSCRIPT 116

Methods, search order 21
Mi

SETDATETIME 152, 153
Minimize

NEWFILE 113
OPEN 113

Minute
SETDATETIME 152, 153

Mo
SETDATETIME 152, 153

MOD function 95
ModificationTimestamp

host iterator 160
local iterator 159

Month

Qedit Scripting Language User Manual Index • 183

SETDATETIME 152, 153
Move cursor 36
MPE

compiling 82
Multiplication 10

N
N, command line argument 22
Name

FINDCONNECTIONTEMPLATE 105
host iterator 160
local iterator 159
NEWCONNECTIONTEMPLATE 112

NAME statement 13, 85
Named constants 6, 100
New features 2
NEWCONNECTIONTEMPLATE method 112
NEWFILE method 113
NewName

RENAME 162
NewWidth

SETWIDTH 143
Non-printing characters 6
NOT operator 10
Numbered

PRINTONHOST 139
Numbers 6
Numeric

division by zero 10
overflow 10
underflow 10

Numeric, storage 10
NUMfunction 91

O
Objects 9

application 31
DATETIME 146
dynamic 41
ITERATOR 158
QEDIT 31

Octal value 6
ON COMMAND statement 13, 87
Open a file 32
OPEN method 114
OpenACopy

OPEN 113
OPENCONNECTION

method 115
OpenName

host iterator 160
local iterator 159

Operators
comparison 12

Operators, arithmetic 10
Option

END 61
RECTANGULAR 61
START 61

OPTION PRIVATE statement 85
Options

BUTTON 56, 90
ENTEREDTEXT 56, 90

OR operator 10
Output

HOSTCOMMAND 108
Overflow, numeric 10

P
Parameters

named 19, 98
positional 18, 98
subroutine 18

PASTE method 34, 139
Path

host iterator 160
local iterator 159

Pathname
CHANGECWD 156
FINDOPENFILE 106

Pattern
FIND 127
FINDALL 130

Personal scripts 24
Personal scripts directory 22
POS function 12, 92
POS method 39
Predicates 10
Preferences dialog 24
Print

host printer 140
local printer 140

PRINTONHOST method 140
PRINTONLOCAL method 140
Properties

AccountPass 162
Activefile 102
AutoIndent 116
Autologon 161
Autopush 101
AutoWorkfile 101
CacheMaxLines 116
CaretAllowedOutsideText 101
CheckServerTimeStamp 101
ColorScheme 161
CommandLine 101
Connection 117, 154
ConnectionName 117
ConnectionTemplate 161

184 • Index Qedit Scripting Language User Manual

ConvertTabsToSpaces 117
Day 148
DayOfWeek 148
DayOfYear 148
DisplayDetabbedColumn 117
File 102
Files 102
Firewall 162
FullFilename 117
GMTHour 148
GMTMinute 148
GMTSecond 148
GroupPass 162
Hello 162
HostCWD 154
HostGroupAccount 155
HostName 161
HostOS 155
HostPID 155
Hour 148
InitialDirectory 161
IsModified 117
IsNew 117
IsOnHost 117
IsQedit 117
IsReadOnly 117
IsSaveable 117
KeepTrailingBlanks 117
LastFoundColumn 117
LastFoundLength 117
LastFoundLine 117
LastSearchString 117
LineCount 117
LinesTruncated 117
LineTermination 117
Livescrolling 101
LocalCWD 102
LogonInformation 161
MaxOpenFiles 155
Minute 148
Month 148
MpEServerName 101
Name 155, 161
OpenConnections 102
OpenCount 155
OriginalCurrentLine 118
Overwrite 101
Password 161
RecordLength 118
ReleaseOnClose 101
Second 148
Selection 118
ServerVersion 155
SessionPass 162
ShowBrowser 155
ShowInvisibles 118

Status 148
Title 118
UserName 161
UserPass 162
UseRulerBar 101
VersionNumber 101
Workfilename 118
Year 148

Property 9, 97
application 101
cross-reference 163
datetime 148
document 116
LASTFOUNDxxxx 61
LocalCWD 63
SELECTION 61
SHOWINVISIBLES 60, 126
STATUS 147
USERULERBAR 126

PROPERTY statement 13, 86

Q
Q, command line argument 22
QEDIT object 31
QeditLanguage

NEWFILE 112
QeditLanguageCC 100
QeditLanguageCOBFREE 100
QeditLanguageCOBOL 100
QeditLanguageCOBOLX 100
QeditLanguageCPP 100
QeditLanguageDATA 100
QeditLanguageFTN 100
QeditLanguageJOB 100
QeditLanguagePASCAL 100
QeditLanguagePASCX 100
QeditLanguagePH 100
QeditLanguageRPG 100
QeditLanguageSPL 100
QeditLanguageTEXT 100
qsc extension 3
qsl extension 3

R
R, command line argument 22
RAND function 95
random number range 63
RANDSEED function 95
Range

DELETE 124
GETTEXT 134
SELECT 141

ReadOnly
OPEN 113

Qedit Scripting Language User Manual Index • 185

Record
adding element 11
constant 7
initialization 8
named value 7
number of elements 91

RECORD type 7
Recordlength

NEWFILE 112
RecordLength

host iterator 160
RECOVER statement 16, 169
Rectangular

DELETE 124
GETTEXT 134
SELECT 141

RECTANGULAR option 61
Rectangular selection 62
Recursion, subroutines 20
Regexp

FIND 127
FINDALL 130

Rename a file 32
RENAME method 162
REPEAT statement 15, 88
Replace text 34
ReplaceWith

FIND 127
Restore position 37
Retrieve

characters 35
lines 35
rectangle 35
selection 38

RETURN statement 20, 88
Return value, subroutines 20
RightColumn

FIND 127
FINDALL 130

RightMargin
INSERTCOLUMN 138

RTRIM function 92
RUN command 53

S
Save a file 32
SAVE method 140, 143
Save position 37
SAVEAS method 141
Saving script 3
Script

autoload 21
AUTOLOAD directory 26
customer library 24
DOS command line 22

environment 21
executing 21
ListCopy 81
ListInclude 81
ListUse 81
loading 21
manual load 27
method 13
MPECompile 82
personal library 24
SCRIPTS directory 26
Sortlines 80
system library 24
unloading 27

Script control dialog 53
Script Control Panel 53
Script file extension 3
Script name 13
Script window 55
ScriptName

UNLOADSCRIPT 116
Scripts

download 67
SCRIPTS directory 26
Se

SETDATETIME 152, 153
Search

results 61
SearchCopylib 100
SearchFile 100
SearchInclude 100
SearchReferenced

FINDALL 130
SearchReferenced application constants 100
SearchUse 100
Second

SETDATETIME 152, 153
Select

all lines 37
characters 37
lines 37, 60

SELECT method 36, 141
Selection

characters 62
checking 65
multi-line 62
none 61
rectangular 62
single line 62

SELECTION property 61
SelectionOnly

FIND 127
SetAt

GUIDES 135
TABS 145

SETCURRENT method 151

186 • Index Qedit Scripting Language User Manual

SETDATETIMEmethod 152
SetEvery

GUIDES 135
TABS 145

SETGMTDATETIME method 153
SETLOGONINFORMATION method 162
SETWIDTH method 144
SHELLCOMMAND

method 116
Shift

PRINTONHOST 139
SHIFTLEFT method 144
SHIFTRIGHT method 145
Short-circuit evaluation 11, 66
SHOWINVISIBLES property 60, 126
SIN function 95
Size

host iterator 160
local iterator 159

Smart
FIND 127
FINDALL 130

SortLines script 80
Special characters 6
SQRT function 96
Start

DELETE 124
GETTEXT 134
SELECT 141

START option 61
StartAtTop

FIND 127
StartColumn

DELETE 123
GETTEXT 134
SELECT 141

StartLine
DELETE 123
DETAB 125
ENTAB 126
FIND 127
FINDALL 130
GETTEXT 133
INSERTCOLUMN 138
PRINTONHOST 139
PRINTONLOCAL 140
SELECT 141
SHIFTLEFT 144
SHIFTRIGHT 144

Startname
SHELLCOMMAND 115

Statements 4
BREAK 86
CALL 18, 86
ERROR 86
IF 14, 87

INVOKE 87
NAME 13, 85
ON COMMAND 13, 87
OPTION PRIVATE 85
PROPERTY 13, 86
RECOVER 16, 169
REPEAT 15, 88
RETURN 20, 88
STOP 21, 88
SUB 17, 88
TRY 16, 89, 169
WITH TIMEOUT 21

STATUS property 147
Stop host command 47
STOP statement 21, 88
String

concatenation 11
FIND 127
FINDALL 130

String constants 6
STRING function 92
SUB statement 17, 88
Subroutine 17

recursion 20
Subroutine parameters 18
Subroutines 13
Subscript 11
Subtraction 10
Synchronous execution

DOS 105
host commands 109

Syntax 3
SYSTEM directory 24

T
Tab stops 146
TABS method 145
TAN function 96
Text

INSERT 136
INSERTCOLUMN 138
listing 81

TIMEOUT option 21
Timestamp

Access 158
Creation 159
Modification 159, 160

TRIM function 92
TRY statement 16, 89, 169
Type coercion 12
typeFloat 99
typeInteger 99
typeObject 99
TYPEOF function 59, 66, 92
typeRecord 99

Qedit Scripting Language User Manual Index • 187

Types, data 99
typeString 99
typeUndefined 99

U
Underflow, numeric 10
Unload script 27
UNLOADSCRIPT method 116
UPSHIFT function 93
UPSHIFT method 39
Use files 100, 131
USER directory 24
User prompting 58
USERULERBAR property 126

V
Variables

global 13, 20
local 20
name 5

W
Wait

DOSCOMMAND 104
HOSTCOMMAND 109
HOSTCOMMANDABORT 109
HOSTCOMMANDSTATUS 110

Wildcard
CHANGECWD 157

WITH TIMEOUTstatement 21
WRITELOG function 59

X
XOR operator 10

Y
Year

SETDATETIME 152, 153
Yr

SETDATETIME 152, 153

	Introduction
	What is Qedit Scripting Language?
	Who Can Use QSL?
	How Do I Write a Script?
	How Do I Run a Script?

	What’s New in This Version
	Highlights in Version 5.8.10

	QSL Foundations
	Overview of Qedit Scripting Language
	Writing a Script
	Saving a Script
	QSL Language Elements
	Statements
	Character Set

	Syntax Elements
	Keywords
	Identifiers
	Comments

	Constants and Values
	Data Types
	Numbers
	Named Constants
	String Constants
	Extended Characters

	Records and Lists
	Initializing Records And Lists
	Using Nested Records

	Objects

	Expressions
	
	Predicate results

	Arithmetic Expressions
	Number Format
	Arithmetic Operations

	Boolean Expressions
	String and List Operations
	Compound Item References
	Subscripting
	Selection on lists
	Finding an Index

	Comparison Operators
	Type Coercion

	Script Structure
	Script Name
	Properties and Methods
	Subroutines and Handlers

	Controlling the Flow
	Conditionals
	Iteration
	REPEAT WHILE Construct
	REPEAT UNTIL Construct
	REPEAT FOR Construct With Numbers
	REPEAT FOR Construct With a Record

	Exception Handlers
	Catching specific errors
	Error Recovery Scope

	Subroutines
	Parameters
	Calling a Subroutine
	Return values
	Local variables
	Global Variables
	Recursion

	Timeouts
	Stopping Execution

	The Script Environment
	Methods and Subroutines
	Loading Scripts When Qedit Starts
	Running Scripts from the Command Line
	Execute Only Argument
	Execute and Terminate Argument
	Prevent Autoloading

	Using Scripts to Add Commands

	Installing Scripts
	Script Libraries
	Robelle Public Library
	Contributed Library

	Where Are They?
	Scripts From Robelle
	Company-wide Scripts
	Personal Scripts
	Specialized Subdirectories
	Autoload Subdirectory
	Scripts Subdirectory

	Managing Loaded Scripts
	Macros and Common Functions

	Some Basic Scripting Operations
	Where To Start
	The QEDIT Application Object

	File Operations
	Creating a File
	Opening a File
	Printing a File
	Saving a File
	Closing a File

	Editing Files
	Adding Text
	Deleting Text
	Replacing Strings
	Copying, Cutting and Pasting Text

	Selecting and Retrieving Text
	Retrieving Text in Known Location
	Moving the Cursor
	Finding Text
	Retrieving Selected Text
	Text Within Text

	Navigating Through Directories
	Local Directories
	Host Directories
	Using the Directory Iterators
	Directory Iterators Are Dynamic Objects
	Local Directory Iterator
	Host Directory Iterator
	Moving To Different Levels

	Executing Host Commands
	Host Commands Environment
	Starting Execution
	Checking Results
	Redirecting Results
	To Wait or Not To Wait
	Is It Really Executing?
	Stopping Execution

	Dealing with Connection Templates
	Find a Connection Template
	Create a Connection Template
	Delete a Connection Template
	Getting All Connection Templates
	Clone a Connection Template

	Executing and Testing Scripts
	The Script Menu
	Controlling Script Execution
	Run Button
	Pause Button
	Stop Button
	Step-through Button
	Source Code Window Expansion

	Testing Your Scripts
	Interactive Debugging
	Displaying Informative Messages
	Using a Cancel Button
	Prompting For Input

	Logging Messages
	Log Window Expansion

	Debugging Tips
	Undo Your Changes
	Checking Identifiers
	Displaying Invisibles
	Infinite Loops

	Getting the Most Out of Scripting
	Coding Tips and Techniques
	Checking Results of a Search
	Checking the Cursor
	Caret Only
	Single-line Selection Without End-of-line
	Line Including End-of-line
	Multi-line Selection
	Rectangular Selection

	Writing For Reusability
	Always Name Your Scripts
	Separate Functions From User Interface

	Directory Iterators
	Limiting Random Number Range
	Is the File Opened?
	Has the File Been Opened?

	With Performance in Mind
	Is There a Selection?
	How Long Is The Selection?
	Working With Single Characters
	Overloading Parameters
	Variables Versus Properties
	Short-circuit Evaluation

	Off-the-Shelf Solutions
	Initializing a Test File
	Comparing Two Files
	Insert a Signature or a Timestamp
	Insert a Rectangular Selection
	Fill a Rectangular Area With Asterisks
	Draw a Box
	Copying Files Between Systems
	Prompt Before Replacing
	Append Text at End of Lines
	Displaying Information From Directory Iterators

	Robelle Script Library
	Sort Lines
	SortActiveDocument() Method
	SortLines() Method

	List Lines
	ProcessListRequest() Method
	ListAll() Method

	MPE Compilers
	DoMPECompile() Method

	Reference
	Overview
	Script Attributes
	Name
	Option Private
	Property

	Control Statements
	Break
	Call
	Error
	IF, Else and Endif
	Invoke
	On Command and Endon
	Repeat and Endrepeat
	Return
	Stop
	Sub and Endsub
	Try and Recover

	Built-in functions
	Character()
	Code()
	Dialog()
	Downshift()
	Exists()
	Integer()
	Length()
	LTrim()
	Num()
	Pos()
	RTrim()
	String()
	Trim()
	Typeof()
	Upshift()
	Writelog()

	Built-in Arithmetic Functions
	** (exponentiation)
	Abs()
	Acos()
	Asin()
	Atan()
	Ceil()
	Cos()
	Floor()
	Fp()
	Integer()
	Ip()
	Ln()
	Log()
	Mod()
	Randseed() and Rand()
	Sin()
	Sqrt()
	Tan()

	Objects, Methods and Properties
	Overview
	What Are Properties?
	What Are Methods?
	Making copies of an object?

	Application Object
	Application Constants
	Data Type Application constants
	File Language Application Constants
	Boolean Application Constants
	SearchReferenced Application Constants
	Line Termination Application Constants

	Application Properties
	Application Methods
	DateTime() Application Method
	DeleteConnectionTemplate() Application Method
	DOSCommand() Application Method
	Exit() Application Method
	FindConnectionTemplate() Application Method
	FindOpenFile() Application Method
	GetConnectionTemplateIterator() Application Method
	GetDirectoryIterator() Application Method
	HostCommand() Application Method
	HostCommandAbort() Application Method
	HostCommandStatus() Application Method
	Loadscript() Application Method
	NewConnectionTemplate() Application Method
	Newfile() Application Method
	Open() Application Method
	OpenConnection() Application Method
	ShellCommand() Application Method
	UnloadScript() Application Method

	Document Objects
	Document Constants
	Document Properties
	Document Methods
	Activate() Document Method
	Close() Document Method
	Copy () Document Method
	Cut() Document Method
	Delete() Document Method
	Detab() Document Method
	Entab() Document Method
	Find() Document Method
	FindAll() Document Method
	GetSelectedText() Document Method
	GetText() Document Method
	Guides() Document Method
	Insert() Document Method
	InsertColumn() Document Method
	Paste() Document Method
	PrintOnHost() Document Method
	PrintOnLocal() Document Method
	Save() Document Method
	SaveAs() Document Method
	Select() Document Method
	SelectAll() Document Method
	SetWidth() Document Method
	ShiftLeft() Document Method
	ShiftRight() Document Method
	Tabs() Document Method

	DateTime Objects
	Creating a DateTime Object
	DateTime Constants
	Status Property Constants
	DayOfWeek Property Constants

	DateTime Properties
	DateTime Methods
	Adddays() DateTime Method
	Compare() DateTime Method
	DaysBetween() DateTime Method
	FmtShortDate() DateTime Method
	FmtShortDateTime() DateTime Method
	FmtShortTime() DateTime Method
	SetCurrent() DateTime Method
	SetDateTime() DateTime Method
	SetGMTDateTime() DateTime Method

	Connection Objects
	Creating a Connection Object
	Connection Properties
	Connection Methods
	ChangeCWD() Connection Method
	GetDirectoryIterator() Connection Method

	Iterator Objects
	Local Directory Iterator
	AccessTimestamp
	CanonicalType
	CreationTimestamp
	ModificationTimestamp
	Name
	OpenName
	Path
	Size

	Host Directory Iterator
	CanonicalType
	ConnectionName
	FileCode
	ModificationTimestamp
	Name
	OpenName
	Path
	RecordLength
	Size

	Connection Template Iterator

	ConnectionTemplate Objects
	ConnectionTemplate Properties
	LogonInformation Property

	ConnectionTemplate Methods
	Rename() ConnectionTemplate Method
	SetLogonInformation() ConnectionTemplate Method

	Properties and Methods Cross-Reference

	Error Messages
	Handling Errors
	Error Numbers

	File Errors

	Appendix A - Earlier Highlights
	Overview of Appendix A - Earlier Highlights
	Highlights in Version 5.0.10
	Highlights in Version 5.0

	Glossary of Terms
	
	
	
	JCW
	Job Control Word
	Asynchronous
	Autoload
	CanonicalType
	Current working directory
	CWD
	Method
	Object
	Properties
	SCP
	Script Control Panel
	Synchronous

	Index

