
For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 1

1

IMAGE Programming

A Robelle Tutorial

February, 2000

Copyright 2000, Robelle Solutions Technology Inc.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 2

2

IMAGE Programming

What’s Inside Page

n IMAGE Database Overview 3

n Creating a Database 13

n Programming: Intrinsics 25

n Programming: Considerations 64

n New Features in IMAGE 72

n Tools and Utilities 79

n Summary 89

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 3

3

IMAGE Database overview

In this section Page

n What is a database? 4

n Structure 5

n Record retrieval 8

n Item formats 11

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 4

4

Why Use a Database?

n Tradeoff: reads vs writes

n Defines structures and relationships

n Recoverability

Why not store data in un-indexed flat files? Because you can't read the
entire file serially every time a customer calls with a query. Databases
are a way to retrieve particular records from a large amount of data in a
fast and efficient way. This means that index structures have to be built
when records are added, so they’re available when those records need to
be retrieved. It’s a tradeoff between slightly less efficient writes vs much
more efficient reads. Typically, fields that are required for on-line
retrievals (customer-no, product-no, invoice-no, etc) are indexed.

Databases also define structure and relationships between the different
data values stored. Individual datasets store the same logical information,
with a rigidly defined structure that allows different applications to read
and write them in a consistent way.

Because IMAGE databases are integral to the HP 3000, they have a
range of special facilities to apply appropriate security, integrity and
recoverability. Files are flagged as “privileged” so special security
applies. Database logging can be enabled, for auditing and recovery.
Backups and recovery are subject to special checks and controls.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 5

5

Structure

n Look for unique value fields
– put in master datasets

n Use Unique fields to retrieve associated records
– in detail datasets

Use product-number (unique) to retrieve associated invoice-line records
for that product. Similarly, customer-no to retrieve invoices for that
customer. Unique values (Customer record, product record) are stored in
masters and used to retrieve repeating values (invoice-lines) which are
stored in details.

Masters have only one key, but details can have multiple keys. I.e. they
can have more than one field defined as a key. So if you require more
than one access path to the data, it would need to be stored in a detail
dataset, even though the data values might be unique. In these cases, it’s
common to define “Automatic Masters” for those (unique) keys.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 6

6

Structure

n Databases contain:
– Master Datasets

• Automatic or Manual

– Detail Datasets

n Datasets contain Fields

n Items vs Fields
– Items: Global logical definition
– Fields: physical occurrence of item

When creating a database, you first have to declare the items of data that
will be stored. Items are logical data values, e.g. Customer Name, Zip
Code, product-description, sales-price, phone-no, etc. Then you define
how these logical entities will be stored, by defining the datasets
(Automatic Master, Manual Master, or Detail), and, for each dataset,
which fields they will contain, and in what sequence.

The database
declaration language is
described in section 2.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 7

7

Structure

Customers master dataset Sales-Lines detail dataset
ORDERS database

Account-No X8
Purchase-Date J2
Delivery-Date J2
Product-No X8
Selling-Price J2
Quantity J1
Discount-Amount J2
...

Account-No X8
Company-Name X40
Street-Address 2X30
City X30
State-Code X2
Zip X10
Country X10
Phone-No X16
Fax-No X16
...

A database is a collection of related datasets. There can be up to 199
datasets in a database.

Each dataset is made up of data entries, also known as records. There
can be up to 255 items in a dataset record. All the records in a dataset
have identical layout.

Each data item in a record has specific attributes regarding what kind of
data it can hold, how much of that data it can hold, and in what format
the data is stored. E.g., eight uppercase letters, or binary numeric capable
of holding ten digits, or 'packed' numeric capable of storing five digits.

Master dataset entries are accessed by their key. The key is the piece of
data that uniquely identifies a data entry. E.g., the single record for
customer account number 12345. In a master dataset only one field is
designated as the key.

Detail datasets are also accessed by their keys. Any detail dataset may
have up to 16 items designated as keys. All the records in a detail dataset
that have the same key make up a chain of detail records. E.g., all the
sales records for customer 12345, or all the sales records for product
BHGF-227.

Each key in a detail dataset relates back to a master dataset. This
relationship forms a path. Therefore a detail dataset may be related to up
to 16 master datasets.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 8

8

How does retrieval work?

n Master datasets
– Key Value and Dataset capacity determine location
– Same calculation used when retrieving records
– Stores “chain head” for details

• first, last, entry count

When writing a new entry into a master dataset, IMAGE determines its
position by applying a formula based on the key value and the dataset
capacity. It uses the same calculation to establish the record’s location
when retrieving. This means that the full key value is required when
retrieving records, and that key values must be unique. It also means that
a Master dataset can have only one key, as a record cannot be in 2
locations at the same time.

Each Master Dataset record stores information about its associated
records in detail datasets. This is called the “Chain Head”, and stores the
location of the first detail record, the last detail record, and the number of
detail records with that key value. A master dataset can store the “chain
head” for multiple associated detail datasets. For example, a
CUSTOMER-MASTER dataset could store chain head information for
ADDRESS-DETAIL and INVOICE-DETAIL, each of which have
CUSTOMER-NUMBER as a key.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 9

9

How does retrieval work?

n Detail datasets
– Records added sequentially (delete chain used first)
– Backward and forward pointers

n Can have multiple keys
– BUT Retrieval can be via only 1 key at a time

New records are added sequentially to a detail dataset. If entries have
been deleted, those deleted locations are used first, in order to keep the
dataset’s “highwater mark” as low as possible (sequential reads typically
read up to the “highwater mark”). Each detail record stores backward
and forward pointer for each key field, I.e. pointing to the location of the
previous and next entries in the chain of entries with that key value.
Detail Datasets can have multiple key fields, but only one set of pointers
can be followed, so retrieval can be done on only one key at a time.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 10

10

Record Retrieval

n Get master record by key

n Find first detail via "first record" pointer

n use "forward pointers" to get other associated details

n or use "last record" and "backward pointers" for
backward

Let’s say, for example, that you need to report all the sales you have
made to a particular customer:

1) Retrieve that customer’s CUSTOMER-MASTER record by finding
its position using the ACCOUNT-NUMBER key field.

2) Use the chain-head information from the master record to retrieve the
first SALES-DETAIL record.

3) Use the forward pointer from the first detail record to retrieve the
second detail record.

4) Use each subsequent detail record’s forward pointer to retrieve the
next record, until all detail records have been retrieved.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 11

11

Item Formats

n Character
X - Unrestricted characters
U - no lowercase

n Numeric
I, J = Integer
K = Absolute binary
R = Real (floating point)
P = Packed decimal
Z = Zoned decimal

Sample Suprtool FORM listings:
>form m-product
Database: STORE.DATA.ACCOUNT

 M-PRODUCT Master Set# 2
 Entry: Offset
 PRODUCT-DESC X30 1
 PRODUCT-MODEL X10 31
 PRODUCT-NO Z8 41 <<Search Field>>
 Capacity: 307 (12) Entries: 13 Bytes: 48
>form d-sales
Database: STORE.DATA.ACCOUNT

 D-SALES Detail Set# 5
 Entry: Offset
 CUST-ACCOUNT Z8 1 (!M-CUSTOMER)
 DELIV-DATE J2 9
 PRODUCT-NO Z8 13 (M-PRODUCT)
 PRODUCT-PRICE J2 21
 PURCH-DATE J2 25
 SALES-QTY J1 29
 SALES-TAX J2 31
 SALES-TOTAL J2 35
 Capacity: 602 (14) Entries: 8 Highwater: 8 Bytes: 38
Note that J and I fields are shown in “words” (I.e. 2 bytes per word). E.g.
J2 is 4 bytes, J1 is 2 bytes. Packed fields are shown in “nibbles” (4 bits),
e.g. P28 is 14 bytes long.

Examine “offset” to determine physical length in bytes.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 12

12

Third Party Indexing
addresses some limitations

n Enhances retrieval with
– partial-key retrievals
– range selection on masters
– additional keys into masters
– Multiple-key access
– keywording in text fields
– boolean logic on keyed retrievals
– etc....

Third Party Indexing tools (Omnidex and Superdex) allow you to build
additional index structures to enhance record retrieval options.
Additional overhead when writing records is offset by more powerful
and efficient record retrievals. These tools are not packaged with
IMAGE, but Hewlett-Packard has worked with their suppliers to tightly
integrate their operation with IMAGE. For more information, contact:

Dynamic Information Systems Corporation (http://www.disc.com/) for
Omnidex

Bradmark Technologies Inc (http://www.bradmark.com/) for Superdex

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 13

13

Creating a Database

In this section Page

n The schema 14

n Items 18

n Sets 19

n Database design tips 21

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 14

14

Creating a Database

n SCHEMA - text file defining structure
– Name of the database
– Security/passwords
– Items and their attributes
– Sets: fields (items), capacities and attributes

n DBSCHEMA compiles SCHEMA, creates Root File

n DBUTIL "CREATE" reads the Root File, creates datasets

The schema of a database is used initially to define the database layout.

Later on in the life of a database, its layout can be altered using a
database terraforming tool such as Adager or DBGeneral. These tools
can generate a new schema file to match the altered database layout.

Many tools generate database structure listings in a format almost
identical to a schema. For example, Query FORM command and
Suprtool FORM command both produce schema-like output.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 15

15

SCHEMA Language

n A regular text file

n Created using a text editor

n The “source code” for the database

n Everything is interpreted as upper case
– except passwords

n <<comments may appear anywhere>>

n $ commands control database options and format of
listing

The entire schema contents is interpreted as uppercase by the
DBSCHEMA program. This is why you need to code uppercase dataset
names and field names in your DB intrinsics.

Comments may appear anywhere except within other comments. A
comment can start on one line and end on another.

$PAGE

$TITLE

$CONTROL

$CONTROL options
are detailed later in this
section.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 16

16

SCHEMA Structure

n BEGIN DATABASE database name;

n PASSWORDS: password part

n ITEMS: item part

n SETS: set part

n END.

The database name can be up to 6 alphanumeric characters, starting with
a letter.

The password part, item part, and set part each repeat as many times as
there are passwords, items, and sets.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 17

17

Password part

n user class number [password];
.
.
.

user class number [password];

Each user class number / password combination defines a user class,
which is used later in the ITEMS and SETS parts to protect the items and
sets .

Numbers range from 1 through 63 and are arbitrary. I.e, higher numbers
don’t grant more or less access than low numbers.

Passwords are from 1 to 8 characters including lowercase characters and
excluding carriage return, slash, semicolon, and blank. Passwords are
case sensitive. I.e., reader, Reader, and READER are all different
passwords. The passwords are arbitrary and have no inherent meaning.
I.e., a password of “Writer” may not grant write access at all.

PASSWORDS: 1 ReadOnly;
 2 WRITER;
 10 CREDIT;
 15 CLERKS;
 20 y2k;
 42 nmd643bc;
 55 Barney;
 63 DO-ALL;

Use DBUTIL to change
the passwords of
existing databases.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 18

18

Item part

n item name,
[sub item count] type designator [sub item length]
[(read class list / write class list)];

Repeat as needed, one per item.

SALES-TOTAL, J2;
STATE-CODE, X2 (1/2);
STREET-ADDRESS, 2X25;
SUPPLIER-NAME, X20;
SUPPLIER-NO, Z8;
UNIT-COST, P8 (1,2,5/2);
POSTAL-CODE, X6;

Data item names may be up to 16 characters long, starting with a letter.
Characters after the first must be chosen from letters A through Z, digits
0 through 9, or + - * / ? ' # % & @

The names are not case sensitive.

Data type designators are E, I, J, K, P, R, U, X, and Z.

Unit Size Type
Word 16 bits E, I, J, K, R
Byte 8 bits U, X, Z
Nibble 4 bits P

The item must always be a whole number of 16-bit words, or an even
number of bytes. E.g., X25 is invalid, but X24 or X26 is okay, and 2X25
is okay, too.

This tutorial lists a
“word” as being 16 bits.
Other HP documents
may show a word as
being 32 bits. The
definition of a “word”
has changed over the
years as the hardware
and operating system
have advanced.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 19

19

Set part for master datasets

n NAME: set name, {MANUAL | AUTOMATIC}
[/INDEXED]
[(read class list / write class list)]
[,device class];

n ENTRY: item name [(path count)],
.
.
.
item name ;

n CAPACITY: maximum capacity
[(blocking factor)]
[,initial capacity [,increment]];

The ENTRY lists the items that make up the field list of the record. An
automatic master has only one field. A manual master has up to 255
fields. Exactly one field must be designated as the key, indicated by the
(path count). A path count of zero indicates a stand-alone manual master,
not linked to any detail datasets.

NAME: M-SUPPLIER, MANUAL (1/2);
ENTRY:
 SUPPLIER-NAME
 ,STREET-ADDRESS
 ,CITY
 ,STATE-CODE
 ,POSTAL-CODE
 ,SUPPLIER-NO(1) <<KEY FIELD>>
 ;
CAPACITY: 211;

NAME: A-DATE, AUTOMATIC (1/2);
ENTRY:
 PURCH-DATE(5)
 ;
CAPACITY: 10007,5003,25%;

The increment can be an absolute number or a percentage of the initial
capacity.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 20

20

Set part for detail datasets

n NAME: set name, DETAIL
[(read class list / write class list)]
[,device class];

n ENTRY: item name [([!]master set name [(sort item name)])],
.
.
.
item name [([!]master set name [(sort item name)])];

n CAPACITY: maximum capacity
[(blocking factor)]
[,initial capacity [,increment]];

A detail dataset may have up to 255 fields. Up to 16 fields may be
designated as search items, linked back to master datasets.

NAME: D-INVENTORY, DETAIL (1/2);
ENTRY:
 BIN-NO
 ,LAST-SHIP-DATE
 ,ON-HAND-QTY
 ,PRODUCT-NO(M-PRODUCT) <<KEY FIELD>>
 ,SUPPLIER-NO(!M-SUPPLIER) <<PRIMARY KEY>>
 ,UNIT-COST
 ;
CAPACITY: 450; <<2 * CAP(M-SUPPLIER)>>

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 21

21

Tips

n Choose data types that work well with the programming
language you will be using

n Avoid tricky data structures that you cannot use in all
your tools

n Define masters before details
– details name their masters, which must have been defined

n Assign capacities and increments realistically
– too large wastes space
– too little means frequent reloads or incrementing
– too little initial capacity on a master causes decreased

performance

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 22

22

Database Design

n Use masters for unique data items like customer
numbers

n Use details for repeated data like customer purchases

n If a master record needs an alternate key, make it a
detail and use an automatic master

n If the data in a detail is volatile, avoid more than two
paths into it, and avoid sorted paths

n Get Suprtool for fast serial scans and eliminate seldom
used search keys

See Adager’s web site
for good discussions on
database design:
http://www.adager.com/
TechnicalPapers.html

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 23

23

Polishing Database Design

n For numeric fields
– use J1 for fewer than 5 digits
– use J2 for fewer than 10 digits
– otherwise use a P (packed) field

n Types X, U, P, and Z give the best hashing results

n Avoid keys of type I, J, K, and R

n Store dates in YYYYMMDD format, either as J2 or Z8

n Assign a primary path to every detail dataset
– select the most frequently used path with more than one

entry per chain

See Robelle’s web site
for a wealth of IMAGE
and MPE information:
http://www.robelle.com
/library/smugbook/mpet
ips.html

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 24

24

DBSCHEMA and DBUTIL

n DBSCHEMA
– “compiles” the schema
– creates the root file

n DBUTIL
– creates the datasets from the root file

$PAGE “this is the title of a new page starting now”

$TITLE “this will be the title for the next page eject”

$CONTROL LIST | NOLIST
ERRORS=n
LINES=nn
ROOT | NOROOT
BLOCKMAX=nnn
TABLE | NOTABLE
JUMBO | NOJUMBO

!file dbstext=filename
!file dbslist;dev=lp
!run dbschema.pub.sys;parm=3
!
!run dbutil.pub.sys
create basename
exit

When creating the
database, make sure you
are logged on as the
user who will be the
creator of the database,
in the group where you
want the database
created. Later, only this
creator user will be able
to use DBUTIL on this
database.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 25

25

Programming: Intrinsics

In this section Page

n What are Intrinsics? 26

n Format 27

n Opening a database 32

n Finding data 34

n Updating data 44

n Locking 48

n Programming tricks 57

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 26

26

Accessing IMAGE Databases through Intrinsic
Calls

n Must use intrinsics to access IMAGE Databases from a
program

n Intrinsics can be called from 3GL (COBOL, SPL, Pascal,
C++)

n Intrinsics can be called from 4GL (Transact, Quick), but
are often disguised with wrappers

n Intrinsics cannot currently be called from the command
line (CI)

Intrinsics are procedures that can be called from a programming
language. On other operating systems these might be known as
procedures, subroutines, methods, APIs, etc. HP calls them “intrinsics”.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 27

27

General Format of the IMAGE Intrinsics

n Dbsomething (Baseid, Dset, Mode, StatusArray,...

n Each IMAGE intrinsic name always starts with DB

n The first four parameters in almost every IMAGE intrinsic
are
– Baseid Database ID
– Dset Dataset Name
– Mode Access mode
– StatusArray A 10-word array

All parameters must begin on a word boundary.

In COBOL, it’s best to use 01 levels, with Sync32 option set on in the
compile.

$OPTIONS SYNC32

01 BASE.
 05 base-id pic x(2).
 05 base-name pic x(8).

As pointed out previously, all IMAGE structures begin on a word
boundary.

As used here, a word is
16 bits, and a
doubleword is 32 bits.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 28

28

The BaseID

n First parameter for each intrinsic is the Baseid.
– bytes 1 and 2 Initially spaces
– bytes 3 through 9 The database name

Up to 6 characters plus a terminator.

n First two bytes assigned a unique value by IMAGE after
database is opened.

n The databasename must end in a semicolon or space.
E.g., “FOO;”

You may end the database name with a semicolon or a space. Space is
not recommended because of programming maintenance headaches! It’s
a lot easier to spot a semi-colon than a space.

You can pass the database variable to other objects within your process.

One example where this is useful is when your program has COBOL
subprograms. You pass the base from subprogram to subprogram via the
Linkage Section.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 29

29

Terminating Names

n Fieldnames, dataset names, database names, and lists
must terminate with
– Semicolon, or
– Space

n Best practice is semicolon

n Easiest to read, debug, maintain
n E.g., "AccountNo,CustName;"

Dataset and Item names are alphanumeric and can be up to 16 characters
long The only special character allowed is a dash.

Eg.

 M-CUSTOMER

 D-PRODUCTS

 ACCOUNT-NO

IMAGE always upshifts the names in the list. You can call the intrinsics
with mixed case if you’d like.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 30

30

The StatusArray

n A mixture of integers and double-integers
– Word 1 Status of last call
– Word 2 Used for locking status
– Word 3 Used for locking status
– Word 4 Reserved
– Word 5-6 Doubleword chain count
– Word 7-9 Doubleword Backward chain pointer
– Word 9-10 Doubleword Forward chain pointer

You’ll be using the the first word in the status array the most!

IMAGE will always return a value of zero in the first word of the status
array IF the completion of the intrinsic is successful.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 31

31

The Intrinsics

n DBOPEN Opens the database

n DBCLOSE Closes a database or a dataset, or
rewinds a dataset

n DBBEGIN Logs a memo for start of transaction

n DBEND Logs a memo for end of transaction

n DBXBEGIN, DBXEND
Used with multiple-base transactions

n DBXUNDO Can rollback the logical transactions

Opening a database is expensive in terms of I/O....don’t do it more often
than you have to.

The DBXBEGIN, END and UNDO intrinsics allow you create logical
transactions with multiple databases.

TurboImage/XL
Database Management
System Reference
Manual: see
TurboIMAGE/XL
Library Procedures...
DBXBEGIN

Planning and
programming multiple-
db transactions can be
tricky. Read up on the
subject before
attempting this!

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 32

32

Example: How to open a Database

baseid = " LOTTO;" << note the two spaces >>
password = "winner"
mode = 5 << mode 5 = read only >>

call DBOPEN(baseid, password, mode, ImageStatus)
if ImageStatus(1) <> 0 then
 call UnableToOpenDB
endif

 Basic Data Base Open Modes

 Mode Access

 1 Modify, allow concurrent modify

 2 Update, allow concurrent update

 3 Read and write, Exclusive Access !!!

 4 Modify, allow concurrent read

 5 Read, allow concurrent modify

 6 Read, allow concurrent modify

 7 Read, exclusive access !!!

 8 Read, allow concurrent read

Modes 1, 3 and 5 are the most commonly used.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 33

33

More Intrinsics

n DBCONTROL Allows you to modify CIUPDATE, TPI
and AUTODEFER modes.

n DBERROR Returns an English message that
corresponds to the status array.

n DBEXPLAIN Prints an English message that
corresponds to the status array.

DBEXPLAIN prints an error message right to your terminal session.
This isn’t very useful for block-mode type programs, such as those using
VPLUS.

DBERROR is great when you need to get the error message into a
variable for displaying. Allow for a very long message...at least 256
bytes.

Use DBCONTROL
Mode 7 to activate
Database Deadlock
Protection. This only
works in MPE/iX 6.0
and greater.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 34

34

Intrinsics to Access Data

n DBFIND Locates a path in the detail set and
sets up pointers in status area.
Use this on Details or TPI paths.

n DBGET Used to retrieve data from a dataset.

You can use DBFIND on IMAGE paths in DETAIL sets, or TPI keys in
DETAIL and MASTER sets.

You can also use DBFIND to search B-TREE structures in MASTER
sets.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 35

35

Ways to Access Data

n Directed If you know the address

n Calculated By Key

n Serial First…next...next...next...

n Chain Serial read down a path

Directed reads are only useful when you know that the location of the
data is NOT going to change.

Other processes running against the database may change the location of
the data..

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 36

36

A Quick Look at DBFIND

n DBFIND(baseid, dset, mode, ImageStatus, item,
argument)

– item: The name of an item that is a path in the detail set
– argument: The value of the item that you want to find
– Mode is always 1

EXCEPT for TPI and B-TREE

DBFIND is used to locate detail dataset records by key. DBFIND does
not return any data records to the program (that is done by DBGET). The
format of the item and argument must match. If the item that you are
searching is binary, then pass a binary reference.

Eg.

01 bn-day-of-year pic x(16)
 value “Day-Of-Year;”.
01 day-of-year comp pic s9(4).

 call DBFIND using Baseid,
 SetName,
 Mode_1,
 StatusArray,
 bn-day-of-year,
 day-of-year

An excellent resource
for B-TREE
programming can be
found in the
TurboImage/XL
Database Management
System Reference
Manual - MPE/iX 6.0

TPI modes can be
found in the 3rd-Party
Vendor documentation.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 37

37

A quick look at DBGET (1 of 3)

n DBGET(baseid, dset, mode, ImageStatus, list, buffer,
argument)

– list: A list of fieldnames whose data you want to retrieve.

DBGET is used to return data records to your program. The data that is
returned is determined by the list of fields named.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 38

38

A sidebar on List

n The List of fieldnames can be one of four things:
– "@;" All items
– "*;" Previous List
– "field_name,field_name,...;"
– an ordered list of item numbers (seldom used)

Some examples of lists....

 “Account-no;”

 “Company-name,Contact-Name;”

 “@;” (All items in the dataset record)

 “*;” (Use the list of names set up in a previous intrinsic call)

Using * is more efficient for subsequent calls to the same dataset, as
IMAGE doesn’t have to parse and do error-checking against the list.

IMAGE will remember the previous list for each dataset!

WARNING! Make sure that you have already defined a list before
using * - otherwise IMAGE will use a NULL list. Your DBPUTs will
merrily return a IMAGE Status of zero - successful completion - when
you didn’t really put anything to the set!

Eg: First call with dbget, list = “account-no,company-name;”
 Next call with dbget, list=“*;”

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 39

39

A quick look at DBGET (2 of 3)

n DBGET(baseid, dset, mode, ImageStatus, list, buffer,
argument)

– After a successful get, buffer will contain the contents of
the items in the list.

– WARNING! If the DBGET fails, the buffer is not cleared or
changed!

WARNING! The buffer size must be at least as large as the amount of
data you are expecting. If the buffer is too small, IMAGE will happily
write the contents into the other memory areas that follow the buffer.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 40

40

A sidebar on Buffer

n The Buffer will contain the values of the fields retrieved,
all strung together. E.g.,
– If List = "account-no,color,quantity;”

then Buffer might look something like
"1234-ABCD ORANGE 00000012”

– And if Quantity were a binary field (e.g., J2)
then Buffer might look something like
"1234-ABCD ORANGE &^%$”

The buffer will contain the contents of all of the items in the list
concatenated by their size. The data will be placed in the buffer
according to the size and format defined in the schema. There are no
field separators.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 41

41

A quick look at DBGET (3 of 3)

n DBGET(baseid, dset, mode, ImageStatus, list, buffer,
argument)

– argument: Contains the search value of the key field.
– Used only for directed or calculated reads

• Use the record # for Mode 4 and 8
• Use the key value for Mode 7
• Mode 7 is the most commonly used mode

DBGET Modes:

 1 Re-Read
 2 Serial Read
 3 Backward Serial Read
 4 Chained Read, or Next Qualified Entry Read (TPI and
 B-Trees)
 5 Chained Read
 6 Backward Chained Read
 7 Calculated Read - Master Sets Only
 8 Primary Calculated Read - Use with Caution
 The record you retrieve may not be the one you’re looking
 for!

We mostly use modes 2 and 7 for Master sets, and modes 5 and 6 for
Detail sets.

Mode 8 DBGETs are
useful when producing
statistics on the health
of your database. Use
Mode 7 for everyday
use.

Migrating Secondaries,
in slide XX of this
presentation.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 42

42

Example: Calculated read on a master

n Masters contain unique information

n Their keys are unique; no two records have the same
key value

AccountNo = "8900-FLUB”
mode = 7
list = “@;”

call DBGET(baseid, dset, mode,
 ImageStatus, list, buffer,
 AccountNo)

AccountNo = "8900-FLUB”
mode = 7
list = “@;”

call DBGET(baseid, dset, mode, ImageStatus,
 list, buffer, AccountNo)

if ImageStatus(1) = 0 then
 <<dbget retrieved 8900-FLUB>>
elsif ImageStatus(1) = 17 then
 <<dbget did not find 8900-FLUB>>
else
 <<dbget failed abnormally>>
endif

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 43

43

Reading Up or Down a Chain of Details

n We need to FIND the chain head before we can read it.
call DBFIND(baseid, dset, mode_1,
 ImageStatus, item, argument)
if ImageStatus(1) = 0 then
 call DBGET(baseid, dset,
 mode_direction,
 ImageStatus, list,
 buffer, dummy)
endif

n mode = 5 indicates to read the chain forwards.

n mode = 6 indicates to read the chain backwards.

Some elements in the ImageStatusArray will contain address information
about the previous and next records in the chain. Changing these
programmatically will have no effect - the ImageStatus array is one-way,
from the calling intrinsic back to the program.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 44

44

Intrinsics to Add and Modify Data

n DBPUT Writes information to a dataset.
Need a unique key for masters.

n DBUPDATE Update information in a dataset.
Must establish currency using
DBGET first.

n DBDELETE Delete information from a dataset.
Like DBUPDATE, must establish
currency first using DBGET.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 45

45

Format of DBPUT

n DBPUT(baseid, dset, mode_1, ImageStatus, list, buffer)
– list and buffer must correspond
– WARNING: Fields not referenced in the list will be filled

with Binary Zeroes

n For a master, a record with the key must not already
exist

n For a detail linked to manual masters, a manual master
record with the key must already exist

A null list will cause the intrinsic to put nothing to the database, and end
up with a successful return. Be careful while using the * list construct!

It’s a great idea to use the * for subsequent calls, as parsing fieldnames
and determining security has a lot of overhead.

You can’t do a DBPUT to AUTOMATIC MASTERS.

Doing a DBPUT to a DETAIL set will automatically update any
connected MASTER sets, including AUTOMATIC MASTERS.

Unless you’re accessing the database in Mode 3 (exclusive access), you
must use a DBLOCK before doing a DBPUT.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 46

46

Format of DBUPDATE

n DBUPDATE(baseid, dset, mode, ImageStatus, list,
buffer)
– the current record is updated
– list and buffer must correspond
– update the fields in the list with the data in the buffer

n Must do a DBGET first to establish currency

n You can modify a key in a Detail Set if CIUPDATE mode
is enabled.

Unless you’re accessing the database in Mode 3 (exclusive access), you
must use a DBLOCK before doing a DBUPDATE

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 47

47

Deleting Records

n DBDELETE(baseid, dset, mode, ImageStatus)
– the current record is deleted

n Must do a DBGET first to establish currency

Unless you’re accessing the database in Mode 3 (exclusive access), you
must use a DBLOCK before doing a DBDELETE.

Performing a DBDELETE doesn’t physically remove the record, but it
adds the record to the Delete Chain. This makes the space available for
a future DBPUT.

If you accidentally delete some records, you can sometimes get them
back with a 3rd-party tool - but don’t count on it.

The calling sequence should be

 DBLOCK

 DBGET - get the record

 DBDELETE

 DBUNLOCK

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 48

48

Locking

n Why Lock?
– Multiprocessing!
– Others processes may be

• reading the data
• updating the data

Although not enforced for reads, you should also lock around DBGETs
if other processes will be changing the data.

If you do not lock around DBGETs and other processes are modifying
the data, you may get a Broken Chain error #18.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 49

49

The Locking Intrinsics

n DBLOCK(baseid, Qualifier, mode, ImageStatus)
– Can lock Conditionally or Unconditionally at Base, Set and

Item levels

n DBUNLOCK(baseid, dummy, mode_1, ImageStatus)
– Releases all locks on the database

n Multiple locks are not allowed unless the dangerous MR
capability is granted

You may only call DBLOCK once per open database if MR (Multiple
Resource Identification Number, or Multi-RIN) capability is not given to
the program.

You should really only perform one lock on a database at a time.
Careless locking strategies can result in a DATABASE DEADLOCK,
which may require re-booting of the system.

To help detect Database Deadlocks, use DBCONTROL mode 7 after the
database is open if you plan on using multiple locks. Some deadlocks
are not detectable.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 50

Locking is optional for reads. But if other applications may be
modifying the data, you should lock around reads, too.

Database level locking is best used in batch applications when there will
be no other accessors to the database. With trends towards 24 by 7
database access required, this method is becoming less prevalent.

Dataset level locking is best used for very simple applications.

Item level locking is best used for complex systems. This method can be
quite tricky, especially if you have applied item-level security. It
requires care on the part of the programmer, and coding bugs are more
likely to happen using this method of locking than with others.

There are limits as to the number of items that you can lock, dependant
upon their size, and the size of the DataBaseGlobal file that is created at
runtime.

Implement standards by setting up subroutines that perform the locking.

50

Different Ways to Pick the Lock

n Database Level Locking
– Not commonly used for interactive applications

n Dataset Level Locking
– Used most often with simple applications

n Item Level Locking
– Most difficult to implement
– Used with complex applications

Disable the Break key
in online applications
that perform locking.

If a user presses Break
during a lock, other
processes will be
waiting for the lock to
release. This could
take a long time for
someone to notice.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 51

51

Updating Some Account Records:
When Do We Lock?

1 Ask for account#

2 Get account data

3 Display data to clerk

4 Wait for clerk to enter changes

5 Accept updated data from clerk

6 Update records with new data

This is a seemingly-simple transaction: update some data based on
changes entered by a clerk.

But IMAGE forces us to lock the data before updating it. Where do we
put the DBLOCK?

If we request a lock any time before step 5, we’ll be locking the data for
an unknown amount of time, because we don’t know how long the clerk
will take to enter the changes. Maybe he’ll look up some information,
answer the phone, go for lunch, … In the meantime, other users may be
locked out of the database, dataset, or that account, depending on what
kind of lock we request.

On the other hand, if we wait that long to lock, how can we be sure that
the data has not been changed by someone else while the clerk was
trying to decide what to enter?

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 52

52

Updating Some Account Records
Locking Strategy 1: Strong Locking

1 Ask for account#

1.1 Conditionally lock the records associated with that
account#

1.2 If the lock is granted continue with step 2, else bail out
and tell the user the data he wants is unavailable

2 Get account data

3 Display data to clerk

4 Wait for clerk to enter changes

5 Accept updated data from clerk

6 Update records with new data

7 Unlock the locked records

Two interesting things here: conditional locking, and locking only the
minimum that is needed to complete the transaction.

With a regular, unconditional lock, you either get the lock right away, or
if the entry is locked you wait in line for your turn. There’s no telling
how long you’ll be waiting, and you cannot un-request an unconditional
lock once you’ve asked for it. Your program is stuck waiting and cannot
do anything else.

With a conditional lock, you either get the lock right away, or you are
notified that you cannot get the lock because someone else already has
the entry locked. You can then take some kind of action, such as
notifying the user to try again later.

There are three levels of locking: database, dataset, or predicate. With
database or dataset level locks, the entire database or dataset is
unavailable to other processes while the lock is held. With predicate
level locking you specify exactly what you want to lock. For example,
you can lock only account 12345, which allows other clerks to update
other accounts while one clerk takes a break in the middle of updating
account 12345.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 53

53

Updating Some Account Records
Locking Strategy 2: “Weak” Locking

1 Ask for account#

2 Get account data

2.1 Save “before” copies of all the data

3 Display data to clerk

4 Wait for clerk to enter changes

5 Accept updated data from clerk

continued on next page

In this scenario we do not lock anything during the user think time.

But we do make a reference copy of the data that we initially retrieved,
so that we can compare it later.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 54

54

Updating Some Account Records
Locking Strategy 2: “Weak” Locking

5 Accept updated data from clerk

5.1 Unconditionally lock the dataset or data entries

5.2 Re-read all the records that were read in step 2

5.3 Compare the newly-read data with the “before” copies

5.4 If the data has not changed, continue with step 6, else
bail out and tell the user that someone else change
the data behind his back

6 Update records with new data

7 Unlock the locked records

After the user has finished thinking, it’s critical that we re-read the
original data to be sure that it hasn’t been deleted or altered by somebody
else in the meantime. We compare the newly-retrieved records with the
record images we saved during the first retrieval.

As long as the same records exist with exactly the same data, we can
apply the updates the user entered. But if anything has changed or
disappeared, we cannot proceed any further. The changes are based on
now-obsolete data, and the transaction must be cancelled.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 55

55

Locking Example

setname = "D-PRODUCT; ”
call DBLOCK(baseid, setname, mode_4,
 ImageStatus)
if ImageStatus(1) = 0 then
 call UpdateDB
else
 <<something went wrong>>
endif
call DBUNLOCK(baseid, dummy, mode1,
 ImageStatus)

n Mode 4 Locking is Set Level Conditional

The most popular locking strategy is to lock the entire set while
performing an update or deletion.

Put the DBGET inside the lock...if it’s outside, someone else may
modify the data before you do!

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 56

56

Error Checking: - Just call me paranoid

n Check the status array after EVERY call!

call DBUNLOCK(baseid, dummy, mode1,
 ImageStatus)
if ImageStatus(1) <> 0
 call HoustonWeHaveAProblem
endif

The reasons for so much error checking:

- Data sets will fill up
- Disc drives fill up
- Disc drives can fail
- Other hardware can fail
- Programmers can make mistakes in their logic

Of course the last item in the list is the most prevalent cause of errors.

It is a good idea to code a standard error-detection routine that looks for
unexpected errors AND ALWAYS USE IT. Eg.

 sub CheckForWeirdErrors(ImageStatus) as Boolean
 if ImageStatus = 0 or 10 or 11 or 14 or 17 or 20 or 22
 return true
 else
 call WereInTroubleNow
 return false
 end if
 end sub

Lazy progamming practices will produce bugs.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 57

57

Programming Trick #1:
Reading all of the records in a chain

n Call DBLOCK
– Call DBFIND
– Call DBGET
– Loop until end-of-chain

• Process the record
• Call DBGET

n Call DBUNLOCK

n For long chains, it may be more inter-process friendly to
put the lock before and after the DBGET

n Always check ImageStatus for unexpected return codes

argument = "4509-FOOP"

call DBFIND(baseid, dset, mode_1, ImageStatus,

 item, argument)

if ImageStatus = 0

 call DBGET(baseid, dset, mode_5,

 ImageStatus, list, buffer, dummy)

 while ImageStatus = 0

 call ProcessTheBuffer

 call DBGET(baseid, dset, mode_5,

 ImageStatus, list, buffer,

 dummy)

 endwhile

endif

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 58

58

Programming Trick #2:
Emptying a Master

Deleting all the entries from a Master

n Very time consuming - lots of behind-the-scenes
processing

n Delete associated detail records first

n If it's a one-shot, use a third-party tool
– Adager, DBGeneral, Suprtool

dblock'dataset
more'records = true
read'mode = serial
while more'records do
 dbget(baseid,dset,read'mode,status,
 list,buffer,dummy)
 read'mode = serial
 if status = end'of'file then
 more'records = false
 else
 if status <> 0 then
 fatal'error
 else
 if status'synonym'count > 1 then
 read'mode = reread
 endif
 dbdelete(baseid,dset,mode1,status)
 if status <> 0 then
 fatal'error
 endif
 endif
 endif
endwhile
dbunlock'dataset

Often many records will
hash to the same location
in a Master. IMAGE
creates a Secondary
Chain. When a Master
record is deleted that has
a secondary chain, the
next item in the chain is
physically moved to the
new empty location. This
is called a ‘Migrating
Secondary’.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 59

59

Programming Trick #3:
Keeping Currency

n Currency is your current position in the dataset.

n You can lose this with complicated programs

n For example,
– You are reading down a chain of customer names.
– You need to update the current record with information

from another customer name detail - say, address.
– You need to find the chain and read down the chain to get

the info...but whoops! The record that you are updating is
lost.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 60

60

Programming Trick #3:
Keeping Currency

How to maintain your currency
n Open the same database twice!

n You need to have MR capability on the program
and the group

n Use the second database when you don't want to
lose your currency in the first

n But lock and unlock very, very carefully or your program
will deadlock

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 61

61

Programming Trick #3:
Keeping Currency

n You will need
– A separate area to store the database name
– A separate ImageStatus array

 base2 = " base1;"

 Call DBOPEN(base2, password, mode5, ImageStatus2)

 Call DBFIND(base2, dset, mode1, ImageStatus2,
 keyname, keyvalue)

n Call DBGET with base2 until you find what you need

n Update the base1 dataset

Don't do lots of DBOPEN's!

 - Resource hogs

 - If you must open the database twice, do it only ONCE

 and leave it open

Here’s an expensive loop:

 LOOP until Record-Is-Found

 CALL DBOPEN

 CALL DBFIND

 CALL DBGET

 CALL DBCLOSE

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 62

62

Programming Trick #4:
The List Construct

n Use "@;" in a list if you know that the dataset layout
will never change. :-)

n Use fieldnames.

n Use "*;" for subsequent reads of the same fieldnames
in the same set.

n If you are doing client/server programming, or have
really big records in the set, only specify which fields
that you need. Data transfer is costly.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 63

63

Programming Trick #5:
Predicate Locking

n Complicated Locking
– Multi-set
– Multi-fields
– Stick with what's simple if you can

n The Qualifying Lock Array
– Number of locks
– Lock Descriptor 1
– Lock Descriptor 2
– Lock Descriptor n

The Lock Descriptor
 Word 1 Length in words of Lock Descriptor
 2-9 Dataset Name
 10-17 Fieldname
 18 Relational Operator <= >= =
 19 Value

Predicate (multi-set, multi-fields) locking is trickier, but is considered a
part of a “strong” locking strategy.

DBUNLOCKs are practically free.

You can DBUNLOCK as often as you want.

DBUNLOCK releases ALL the locks

Be careful using locking when your process has two databases open!
You may deadlock yourself.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 64

64

Programming: Considerations

In this section Page

n Paths 65

n Serial scans 68

n Erasing a master dataset 71

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 65

65

Paths Are For People

n What are paths?

n Every path you add increases overhead

n Paths are keys for on-line retrieval Database Tools

n Paths seldom make sense for batch tasks

A path is a structural relationship between entries in a master dataset and
related entries in detail datasets. Within detail datasets, entries having the
same search item value are also linked together forming a chain. IMAGE
takes care of maintaining the information in these structures. Because of
that, every path you add increases the amount of work IMAGE has to do
whenever the information changes.

Paths are designed to provide quick access to existing data. Fast access is
critical to on-line applications but not necessarily for batch processes.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 66

66

How Many Inquiry Paths Should I Have?

n What is the volatility of the dataset?

n How fast are new entries added?

n How often does the data change?

n How often is the data queried by the key?

n High Read/Write ratio => more keys

IMAGE has to work hard whenever information in a path changes. That
is when you insert or delete entries and when you update a search item
value. You should estimate the volatility of the dataset in order to decide
how many paths you need and which items to use. Volatility is the ratio
between read and write requests. If the ratio is low e.g. 1 read/1 write,
you should keep the number of paths to a minimum and keep the
overhead down. If the volatility ratio is high e.g. 1000 reads/1 write, you
can add paths to provide retrieval alternatives.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 67

67

The Purpose of a Path

n Remember: paths are optional!

n Divide a dataset into many small subsets

n Don't divide it into a few, large subsets

n If # search values < # entries per block,
then serial scan will be faster!

A good access path is one that produces many short chains rather than a
few long chains. Remember also that a dataset does not require a path.
You could very well create a stand-alone detail dataset that is not linked
to any master.

If you have to retrieve all the entries in a dataset, it might be faster to do
a serial scan than to do a chained read with each key value. That’s more
so if the number of unique values is less than the blocking factor. Each
unique value would require 1 read whereas a serial scan takes only 1/N
reads (where N is the blocking factor). In other words, each read in a
serial scan retrieves many unique values.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 68

68

Example of a "Good" Serial Scan

n There are 2.3 million detail entries of 300 bytes

n There are 13 records per block

n We have 162,000 order numbers to search for

n We want the lines sorted by order number

n How many disk reads for chained access?

n How many disk reads for serial scan?

n What if you use Nobuf/MR (Suprtool)?

Here is a quick way to estimate the number is disc I/Os required to
retrieve 162,000 orders and related detail lines. To get at the details, you
first need to read the master entry using DBFIND. This causes one I/O
for each order number.

Then, there are 260,000 detail lines for these orders. Unless the detail
dataset has been just before the job, the detail entries are scattered all
over the place in the detail dataset. It’s quite possible that each detail line
will require one I/O.

So, 162,000 DBFINDs plus 260,000 DBGETs add up to 422,000 disc
reads.

Instead, you could do a serial scan straight out of the detail dataset. Each
serial read retrieves one block at a time. Assuming there are 13 records
per block, a serial scan only takes 176,924 disc reads (compared to
260,000). Since we do not have to access the master dataset, we are also
saving 162,000 disc reads. You have eliminated 245,076 I/Os. That’s
very good.

An extract utility such as Suprtool can do better than that because it
reads multiple blocks in each disc read. This technique is called
MR/NOBUF (multi-record, no buffer). In this example, Suprtool could
read more than 150 entries in one I/O. The number of disc reads then
comes down to around 15,000.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 69

69

Example of a "Bad" Serial Scan

n Master dataset of 1 million entries of 400 bytes

n There are 10 records per block

n We have 1,000 search keys

n How many disk reads for keyed access?

n How many disk reads for serial scan?

n Serial Scan will always be slower

The opposite is also true: there are times when a chained read is going to
be faster than a serial scan.

IMAGE is able to go directly at each entry using the hashing algorithm.
This means the program only needs one I/O for each key value.

A serial scan would take 100,000 disc reads because it would retrieve
only 10 records each time. Even Suprtool would take longer. It would be
able to read about 120 records per I/O or about 6,500 disc accesses.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 70

70

Serial Scan Speed Puzzle

n You deleted old entries (25% of dataset)

n Why isn't the serial scan faster?

n Empty space in masters and details

n Repacking a detail dataset

n Resizing a master dataset

You have an archive program that scans all your datasets, masters and
details, to delete obsolete entries. You are hoping that removing these
unneeded entries will speed up full serial scans. To your surprise,
nothing has changed. Why is that?

Entries in a master dataset are placed in random location based on the
hashing algorithm. Entries could be anywhere so a serial scan on a
master dataset always reads up to the dataset capacity. The only way to
speed up a serial scan is to reduce the size of the master, if that’s
feasible. Remember that changing the capacity forces all existing entries
to be re-hashed. You might be helping serial scan but you might be
hurting calculated reads at the same time.

Entries in a detail dataset are placed sequentially as they are created. A
brand new detail dataset where you simply add new entries does not
have any empty location. IMAGE keeps track of the next empty location
using the highwater mark. A serial scan typically reads up to the
highwater mark.

When the archive program deletes old entries, these locations are marked
as available again and are added to the delete chain. This chain is only
used and maintained by IMAGE itself. If you add a new entry, IMAGE
simply follows the delete chain and inserts the entry in the first empty
spot. So, entries that make up the delete chain can be anywhere in the
dataset. But IMAGE still reads up to the highwater mark. To fix this, you
have to repack the dataset in order to remove the delete chain and reset
the highwater mark.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 71

71

Erasing a Master Dataset

n Primaries and Secondaries

n Migrating Secondaries

n After Dbdelete of a Master Primary,
Call Dbget with Mode 1 instead of 2.

There are 2 types of entries in a master dataset: primaries and
secondaries. Primary entries are stored in the location calculated by the
hashing algorithm. Secondary entries are stored in a location other than
their primary address because that location was already occupied by a
primary entry. Secondaries for a primary location are linked and form
what is called a synonym chain. One IMAGE rule states that an entry
must reside in its primary location, if that location is available.

This means that, if you delete a primary entry, the first secondary in the
synonym chain (if any) is moved to the primary location. This is known
as a migrating secondary. So, if you are trying to clean up a master
dataset, you should call DBGET with mode=1 after a DBDELETE to re-
read the same location. Maybe a new entry has been moved there.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 72

72

New Features in IMAGE

In this section Page

n Third Party Indexing (TPI) 74

n Jumbo datasets 77

n Automatic dataset expansion 78

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 73

73

IMAGE has changed and grown

n Access
– Omnidex
– Superdex
– TPI
– B-Trees

n Capacity
– Jumbo Datasets

n Maintenance or Uptime
– DDX
– MDX

Even though IMAGE has been faithfully storing and serving up data for
over two decades, it has been improved and expanded to meet the data
demands that customers have had. These areas of improvement have
been in the general areas of Access, Capacity and Maintenance.

Relational Access was one of the first enhancements made to IMAGE.
This was done by a Third-Party software vendors.

As data grew and larger applications were being hosted on the HP 3000
capacity became a concern. This was was addressed with Jumbo
Datasets in MPE/iX 5.0.

In conjunction with capacity, 24 x 7 operations with no maintenance
downtime, became important. Detail and Master Dataset eXpansion
features were added to keep the application running and prevent
downtime for database maintenance.

Since its inception in the mid-seventies, IMAGE has grown and changed
in the areas of access, capacity and maintenance, but you still can open a
database with the same dbopen call you wrote over twenty years ago.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 74

74

Relational Access

n Omnidex/Superdex
– Relational Access to a Network DB
– David@ type searches
– 19970101:19970315

n Standardized with TPI
– two standards
– HP helped standardize

IMAGE is what is known as a network database, which did not lend
itself to allow the type of access that some users had been used to. These
types of accesses, such as partial-key retrieval, or in-between values
would require either a serial read thru the entire dataset, which was time
and resource consuming and not practical, or a KSAM file that would be
kept in sync with the data in the dataset. The KSAM file would then
point directly to the record in the dataset.

Two third-party products emerged as methods of providing this indexed
access or relational queries of their data, while still using image or at
least image-like intrinsic calls.

While these products flourished, one annoying problem for developers
was that they did differ in their implementation and required that any
program run with a lib= or xl= statement in order to insure that their
version of dbfind or dbput, would not only add to the database but also
keep the index in sync. Some programs would not run with this
statement and therefore cause application problems and databases would
have to be re-indexed.

DISC and Bradmark agreed to standardize the intrinsic calls and modes
for each as well as provide a standard set of dbinfo calls to gain more
information about an index. HP agreed to modify IMAGE to no longer
require that the xl= statement be necessary, therefore insuring that the
index was always in-sync with the database.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 75

75

Intrinsics

n dbfind

n modes

n dbget

n dbinfo 8xx calls

The indexing products, as mentioned previously would allow for
Relational types of accesses. Simple partial-key retrievals were done thru
the standard modes of access, such as dbfind mode 1, followed by a
dbget, mode 5 (read chain). The argument passed to dbfind would
contain certain characters which would trigger the indexed search, such
as “David@”. A dbfind with this type of search on an index would
retrieve all entries beginning with David:

David Greer
David Duchovny
David Lo

The only change to the application, would be to insure that it would be
able to logically handle n number of entries and be able to read down
chains for certain types of queries. The modes specified to dbfind
typically help control either the type of data being retrieved, (mode 1 for
byte type, mode 11 for binary/ numeric data) or help control the type of
lookup, such as >, >= (mode 2nn), >, >= (mode 3nn) etc. In dbfind
modes 1, 12 and 21 the argument can contain many different operators,
some examples are:

Conditional operators such as: @, any variable number of number or
alpha characters, ?, any single alphanumeric character, #, any single
numeric character. Retrieval operators such as >=, <= and <>. Boolean
operators such as AND, OR, NOT.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 76

76

B-Trees

n HP's contribution

n simple partial key retrieval

There are some companies who did not require the advanced level of
relational access, or did not like non HP solutions and still wanted to do
partial-key retrieval lookups.

HP added B-Trees (indexed access to IMAGE data) in C.07.10 version
of IMAGE that was available on MPE/iX 5.5 Express 4 release.

The method of indexing was done via a KSAM/XL file, which kept the
index in sync with the database. The index file is kept in the Posix space
with the same name as the dataset, but has the extension .idx. While not
a sophisticated as the full relational capabilities of Omnidex or Superdex,
it does provide simple partial-key retrieval access.

Similar to the two TPI products the type of access is controlled by the
mode specified in the dbfind call and the contents of the argument. For
example dbfind mode 1, will work as it does without a B-Tree, or can be
used for a B-Tree search if BTREEMODE1 is ON, which can be set in
dbutil or can be set programatically with a dbcontrol call. Other modes
are, four (4) which allows a B-Tree index search on numeric fields.
Mode 10 is a standard IMAGE dbfind mode 1 search regardless of the
value of the BTREEMODE1 setting. Modes 21 and 24 are the same as 1
and four but are faster, but they do not return the number of entries
qualified.

B-Trees searches also allow wildcard searches, with the following
argument syntax, (<, <=, >, >=, “PK” or [] for between).

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 77

77

Capacity

n Jumbo Datasets

n Super Jumbo Datasets

With the limit of anyone dataset being only 4GB (say this with a smile),
for some users and applications this limit of 4GB for a dataset was
simply not enough. Some application vendors were required by law to
keep up to five years of data online.

The solution to this became known as jumbo data sets. Instead of a
single file for a dataset, HP devised a way to have multiple files store
data. Due to structural limitations, the new limit for datasets became 40
Gb, instead of 4Gb.

For jumbo datasets, the data is stored in files in the POSIX name space
with the extension, “.001”, “.002” and so on. For example if the dataset
CUSTMAST is the second dataset in the Orders database is a Jumbo
master with two “chunk” files you would have three files that make up
the dataset:

1) Order02 {chunk control file no data stored}

2) Order02.001 {chunk number 1, contains data}

3) Order02.002 { chunk number 2, contains data}

The first file is sometimes referred to the chunk control file, contains no
“CUSTMAST” data, but rather information about the dataset. The data is
actually stored in the two “chunk” files.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 78

78

Maintenance/Uptime

n Capacity changes when needed

n DDX

n MDX

n Three values
– Maximum capacity
– Initial capacity
– increment

As some applications were required to be on-line 24 hours, 7 days a
week, and the nature of datasets required them to have a fixed capacity
which had to be all allocated, problems would arise when a particular
dataset would reach it’s capacity. Applications would then have to be
shut down, in order for more room to be added to that particular dataset,
which in some cases would take not only days but hours.

Database Administrators, would then be forced to create datasets with
huge capacities which would all be allocated in order for them to not
have to bring down at an unscheduled or unplanned point in time. This,
however, was not an efficient use of resources.

It was proposed that databases be allowed to expand as needed, so as to
reduce the waste of disc space. From this DDX (Detail Dataset
eXpansion) and MDX (Master Dataset eXpansion) were born.

A dataset can be defined with the following values, maximum capacity,
initial capacity and an increment. The maximum capacity is the
maximum number of entries the dataset can hold. The initial capacity is
the number of spaces that the dataset can hold, once this limit is reached
the dataset will expand by the number of entries specified by the
increment, which can be expressed as a percentage of the initial capacity.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 79

79

Tools and Utilities

In this section Page

n Database utilities 80

n Database tools 83

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 80

80

Database Utilities

n DBUTIL

n DBSTORE | DBRESTORE

n DBLOAD | DBUNLOAD

n DBRECOV

Utilities to manage your database - set passwords, create and purge, load
and unload, store and restore and recover.

DBSTORE and DBRESTOR are backup tools.

DBUNLOAD and DBLOAD are for dumping the data from a dataset
into a file, and reloading from that file. Seldom needed now that we have
database altering tools like Adager.

DBRECOV is to recover a database after a system failure. You must
have transaction logging enabled on the database. Restore the database
from a backup, then use DBRECOV to reapply the transactions from the
logfile.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 81

81

DBUTIL - Manages the database

n Creates the database fileset

n Erases the data and resets the database

n Purges the database fileset

n Display database settings, usage and locking

n Sets options for logging and updating

n Enables and disables settings such as logging and
indexing

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 82

82

OTHER HP DB Utilities

n DBLOAD | DBUNLOAD
– Loads and unloads data in the database

n DBSTORE | DBRESTOR
– Stores and restores the database using a backup format

n DBRECOV
– Recovers the database from log files

Never restore only part of a database to try to recover data.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 83

83

Database Tools

n QUERY

n SUPRTOOL

n ADAGER

n DBGENERAL

n HOWMESSY

n DBAUDIT

Tools to manipulate the database and the data in it and optimize its
performance.

SUPRTOOL, the “database handyman”, is a general-purpose reading,
writing, sorting, extracting, selecting, transforming, web-enabling,
linking, tool for data files.

Adager and DBGeneral are for maintaining and restructuring databases.

HowMessy reports on internal efficiency of database pointers.

DBAudit produces reports from transaction logfiles.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 84

84

QUERY - Database access tool

n Simple data entry capability

n Modification and deletion of data

n Data retrieval

n Simple data reporting

Useful for adding test data to a database, producing simple reports,
finding invalid data and deleting unwanted records.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 85

85

SUPRTOOL - Data extraction

n Extremely fast data extraction

n Simple data entry and modification

n Data manipulation prior to reporting

n Export data to other applications and platforms

Use Suprtool for its extremely fast selection and sorting ability prior to
generating reports with tools such as COBOL or Cognos.

Use it to format data prior to exporting it to other applications and
platforms - e.g. Excel, Oracle

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 86

86

ADAGER | DBGENERAL

n Perform database tuning

n Add paths, fields, items, sets

n Move or copy databases

n Change capacities

n Repack paths

n Reblock datasets

n Build a schema

These utilities allow you to make changes to the database structure
without having to unload the data from the database. For large databases
this is essential.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 87

87

HOWMESSY - Database performance analyzer

n Migrating Secondaries

n Inefficient Paths

n Insufficient capacities

n Poorly designed key fields

Run HOWMESSY against your databases regularly (e.g. monthly) to
analyze performance and check for capacities which may be nearing
their limits.

See the IMAGE
Performance tutorial,
also at this conference.

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 88

88

DBAUDIT

n Analyze IMAGE log files

n Verify database changes

n Verify program operation

n Create audit trails

n Monitor database security

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 89

89

IMAGE Programming
Summary

n What We've Learned
– What is a database?
– The SCHEMA language
– Intrinsics
– Programming tips and tricks
– New features in IMAGE
– Tools and utilities

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 90

90

How Does Robelle Fit in?

n "We Wrote The Book"

n Robelle has been an IMAGE expert since IMAGE was
invented

n Robelle is part of the team that designs IMAGE

n Robelle knows all about
– Performance
– Throughput
– Migration
– Sharing

n "WE KNOW BIG DATA"

For Techies

References

IMAGE Programming

HP 3000 Solutions Symposium 91

91

Where to Get More Information

n The IMAGE/3000 Handbook
– ISBN 0-914243-00-4

Published by Wordware
P.O. Box 14300, Seattle WA 98114

n HP 3000 Quick Reference Guide

n TurboImage /XL Database Management System
Reference Manual
– Available on the web from HP at

http://docs.hp.com/dynaweb/smpe/ for MPE/ix 6.0

n HP3000-L mailing list
– Ask Questions! Answers are generous...

